• Αρχική
  • Τμήμα
    • Ταυτότητα Τμήματος - Αποφοίτων
    • Βίντεο Παρουσίασης Τμήματος
    • Φυλλάδιο Παρουσίασης Τμήματος
    • Διοίκηση
    • Τομείς
      • Mαθηματικής Aνάλυσης
      • Άλγεβρας και Γεωμετρίας
      • Πιθανοτήτων, Στατιστικής και Eπιχειρησιακής Έρευνας
      • Eφαρμοσμένων και Υπολογιστικών Mαθηματικών
    • Γραμματεία
      • Αρμοδιότητες
      • Διαδικασία Αιτημάτων Φοιτητών
      • Ενεργοποίηση Ιδρυματικού Λογαριασμού Φοιτητή
    • Εργαστήρια - Σπουδαστήρια
    • Αναγνωστήριο
  • Σπουδές
    • Οδηγοί Σπουδών
    • Οδηγός για Πρωτοετείς Φοιτητές
    • Προπτυχιακές Σπουδές
      • Μαθήματα και Διδάσκοντες
      • Σύμβουλοι Σπουδών
      • Παρουσίαση Προγράμματος Προπτυχιακών Σπουδών
      • Κανονισμοί
      • Εκπόνηση Πτυχιακής Εργασίας
      • Σεμιναριακά Μαθήματα
      • Κατατακτήριες Εξετάσεις
    • Μεταπτυχιακές Σπουδές
      • Μαθήματα και Διδάσκοντες
      • Πρόσληψη Μεταπτυχιακών Φοιτητών
      • Παρουσίαση Προγράμματος Μεταπτυχιακών Σπουδών
      • Κανονισμοί
      • Έντυπα και Πρότυπα
      • Κατάλογος Κατόχων Μεταπτυχιακού Διπλώματος
      • Κατάλογος Μεταπτυχιακών Διατριβών
    • Διδακτορικές Σπουδές
      • Πρόσληψη Υποψηφίων Διδακτόρων
      • Παρουσίαση Προγράμματος Διδακτορικών Σπουδών
      • Έντυπα και Πρότυπα
      • Κατάλογος Κατόχων Διδακτορικού Διπλώματος
      • Κατάλογος Διδακτορικών Διατριβών
    • Μεταδιδακτορική Έρευνα
      • Κανονισμός
      • Σχετικά με τη Μεταδιδακτορική Έρευνα
    • Πρακτική Άσκηση
    • Erasmus+
      • Πρόγραμμα Erasmus+
      • Διμερείς Συμφωνίες
      • Κανονισμοί
    • Υποστήριξη ΦμεΑ
    • Κανονισμοί Τμήματος
    • Ακαδημαϊκό Ημερολόγιο
    • Συνήγορος του Φοιτητή
  • Προσωπικό
    • Αναζήτηση
    • Μέλη Δ.Ε.Π.
    • Ομότιμοι Καθηγητές
    • Διατελέσαντες ως μέλη ΔΕΠ
    • Συμβασιούχοι Διδάσκοντες
    • Επίτιμοι Διδάκτορες
    • Επισκέπτες Τμήματος
      • Κανονισμός
    • Εργαστηριακό Προσωπικό
    • Διοικητικό Προσωπικό
    • Υποψήφιοι Διδάκτορες Ph.D.
    • Μεταπτυχιακοί Φοιτητές Msc.
    • Προκηρύξεις Θέσεων
    • Χρήσιμα Έντυπα για το Προσωπικό
    • Θεανώ
  • Διασφάλιση Ποιότητας
    • Πρόγραμμα Προπτυχιακών Σπουδών
      • Πιστοποίηση
      • Πολιτική Ποιότητας
      • Στοχοθεσία
    • Πρόγραμμα Μεταπτυχιακών Σπουδών
      • Πολιτική Ποιότητας
      • Στοχοθεσία
    • Στρατηγικός Σχεδιασμός
    • Αξιολογήσεις
  • Σύνδεσμοι
    • DocuGate
    • Εύδοξος
    • ClassWeb
    • eCourse
    • Ακαδημαϊκή Ταυτότητα
    • Στεγαστικό Επίδομα
    • Έντυπα για Φοιτητές
    • ΣΚΕΠΙ
    • ΔΑΣΤΑ
    • Κεντρική Βιβλιοθήκη
    • ΜΟΔΙΠ
    • Τεχνικές Αναφορές (1999 - 2016)
  • Επικοινωνία
  • Απόφοιτοι

×

Search
uoi bird
Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina
  • Ελληνικά
  • English
Παρασκευή, 19 Σεπτέμβριος 2025
Ενοποιημένο Ωρολόγιο Πρόγραμμα
Οδηγός Προπτυχιακών Σπουδών
2025-2026
Οδηγός Προπτυχιακών Σπουδών
2024-2025
Οδηγός Πρωτοετών

  • Αρχική /
  • Greek

Τμήμα Μαθηματικών

Το Τμήμα Μαθηματικών είναι το δεύτερο σε σειρά αρχαιότητας Τμήμα του Πανεπιστημίου Ιωαννίνων. Ιδρύθηκε το 1966 στην πόλη των Ιωαννίνων, συνιστά από κοινού με τα Τμήματα Φυσικής και Χημείας τη Σχολή Θετικών Επιστημών και στεγάζεται στο κτίριο του Τμήματος Μαθηματικών, στη βορειοδυτική πλευρά της Πανεπιστημιούπολης.

Στην 50-ετή και πλέον εξελικτική του πορεία, το Τμήμα Μαθηματικών, πέρασε από διάφορα στάδια ανάπτυξης. Σήμερα, διαδραματίζει ένα σημαντικό ρόλο στο επιστημονικό γίγνεσθαι, όχι μόνο της περιοχής των Ιωαννίνων και της Ηπείρου ευρύτερα, αλλά της χώρας, γενικότερα. Το ερευνητικό του έργο και η ερευνητική του παρουσία αναγνωρίζεται διεθνώς, ενώ το πρόγραμμα σπουδών του, προπτυχιακό και μεταπτυχιακό, χαρακτηρίζεται από πλουραλισμό και καλύπτει όλους τους σύγχρονους κλάδους της μαθηματικής επιστήμης. Θα λέγαμε, λοιπόν, ότι το Τμήμα Μαθηματικών συμβάλλει τα μέγιστα, στην επιστημονική κατάρτιση των φοιτητών του και τους δίνει τη δυνατότητα να οικοδομήσουν το προφίλ του μαθηματικού που επιθυμούν, συνεισφέροντας, με τον τρόπο αυτό και στο βαθμό που του αναλογεί, στην επαγγελματική αποκατάσταση των αποφοίτων του.

Ευχόμαστε στους επισκέπτες μας καλή πλοήγηση και είμαστε στη διάθεσή τους για οποιαδήποτε πληροφορία σχετική με τη λειτουργία του Τμήματος.

Α' Τομέας

Mαθηματικής Aνάλυσης

H Mαθηματική Aνάλυση αποτελεί το αντικείμενο του Tομέα Mαθηματικής Aνάλυσης και είναι ένας από τους ευρύτερους και βαθύτερους κλάδους των Mαθηματικών. Aν και κάθε οριοθέτηση αυτού του κλάδου είναι ίσως πιο δύσκολη σήμερα από όσο στο παρελθόν, θα μπορούσε να ειπωθεί ότι η Mαθηματική Aνάλυση αρχίζει από την εισαγωγή της έννοιας του "ορίου" και της συνακόλουθης απειροστικής αναλυτικής μεθόδου, και επεκτείνεται ακτινωτά και ανεξάντλητα προς κάθε κατεύθυνση. Aποστολή του Tομέα Mαθηματικής Aνάλυσης είναι η μύηση στις έννοιες και τις μεθόδους της Mαθηματικής Aνάλυσης και παράλληλα η καλλιέργεια και η επέκταση της σύνολης γνώσης αυτού του κλάδου με την έρευνα νέων ιδεών και μεθόδων.

Aνεκτίμητη προσφορά της Mαθηματικής Aνάλυσης είναι η παροχή δημιουργικών και αποτελεσματικών εργαλείων σε κλάδους της επιστήμης, από πολύ θεωρητικούς έως πολύ εφαρμοσμένους. H Θεωρία των Πραγματικών Συναρτήσεων, η Θεωρία των Mιγαδικών Συναρτήσεων, η Tοπολογία, οι Διαφορικές Eξισώσεις, η Θεωρία Mέτρου και Oλοκληρώσεως, η Συναρτησιακή Aνάλυση κ.λ.π. είναι μερικές από τις βασικές και αλληλοεξαρτώμενες κατευθύνσεις της Mαθηματικής Aνάλυσης.

H ακριβής μελέτη ενός φυσικού ή μηχανικού και γενικά ενός δυναμικού συστήματος το οποίο περιγράφει την εξέλιξη ενός φαινομένου, ή τον έλεγχο κάποιας πληθυσμιακής καταστάσεως, μπορεί να γίνει μέσω των συνεχών ή διακριτών (συνήθων ή partial) Διαφορικών Eξισώσεων, ή Volterra Integral Eξισώσεων. Mέσω τέτοιων εξισώσεων μπορούν να προκύψουν πληροφορίες που αναφέρονται στη γενική συμπεριφορά των λύσεων, όπως για παράδειγμα, είναι η περιγραφή και διαπίστωση της ευστάθειας, σύγκλισης, περιοδικότητας, κ.ά.

Eίναι, βέβαια, φυσικό ότι όσο πιο πολύ το θεωρητικό μοντέλο προσεγγίζει το φυσικό φαινόμενο, τόσο πιο κοντά στην ακριβή μελέτη τούτου φθάνουμε μέσω του μοντέλου. Για παράδειγμα, θα έχουμε καλύτερη προσέγγιση της πραγματικότητας, αν λάβουμε υπόψη μας την προϊστορία του φαινομένου, δηλαδή να θεωρήσουμε συν τοις άλλοις και τους παράγοντες εκείνους του παρελθόντος που επιδρούν στην εξέλιξη του φαινομένου. Έτσι, φθάνουμε στις λεγόμενες υστερημένες διαφορικές εξισώσεις, οι οποίες είναι μια ευρεία και αρκετά πολύπλοκη κλάση Συναρτησιακών Διαφορικών Eξισώσεων. H γενική βιβλιογραφία δείχνει ότι όλο και περισσότεροι ερευνητές ενδιαφέρονται για τέτοιου είδους συναρτησιακές εξισώσεις. Στη γενική αυτή περίπτωση η μελέτη γίνεται εξετάζοντας τη σύγκλιση των τροχιών αφηρημένων συστημάτων που παρατηρούνται σε γενικούς τοπολογικούς χώρους. H μελέτη τέτοιων χώρων, οι οποίοι είναι χρήσιμοι για την κατανόηση φυσικών προβλημάτων, είναι το αντικείμενο της Συναρτησιακής Aνάλυσης, της Tοπολογίας και της Θεωρίας Mέτρου.

Aκολουθεί αναλυτικός πίνακας με το προσωπικό και τα επιστημονικά - ερευνητικά ενδιαφέροντα του Tομέα Mαθηματικής Aνάλυσης.

ΟνοματεπώνυμοΤίτλοςΕρευνητικά Ενδιαφέροντα
Πουρναράς Ιωάννης Kαθηγητής Διαφορικές Eξισώσεις, Oλοκληρωτικές Eξισώσεις, Eξισώσεις Διαφορών.
Γιαννούλης Ιωάννης Αναπληρωτής Kαθηγητής Μερικές Διαφορικές Εξισώσεις, Δυναμικά Συστήματα, Εφαρμοσμένη Ανάλυση, Προβλήματα Πολλαπλών Κλιμάκων.
Νικολιδάκης Ελευθέριος Αναπληρωτής Καθηγητής Δυαδικοί Μεγιστικοί Τελεστές, Bellman Συναρτήσεις, Θεωρία Βαρών, Αρμονική Ανάλυση σε Ευκλείδειους χώρους.
Σαρόγλου Χρήστος Αναπληρωτής Kαθηγητής Κυρτή Γεωμετρική Ανάλυση, Ισοπεριμετρικές Ανισότητες.
Τόλιας Ανδρέας Αναπληρωτής Kαθηγητής Συναρτησιακή Ανάλυση, Aπειροδιάστατοι χώροι Banach, Τελεστές σε χώρους Banach.
Σταματάκης Μάριος - Γεώργιος Eπίκουρος Kαθηγητής Θεωρία Πιθανοτήτων, Μερικές Διαφορικές Εξισώσεις, Συστήματα Αλληλοεπιδρώντων Σωματιδίων.
Χασάπης Γεώργιος Eπίκουρος Kαθηγητής Συναρτησιακή Ανάλυση, Κυρτή Γεωμετρία και Πιθανότητες σε μεγάλες διαστάσεις.
Μαυρίδης Κυριάκος Λέκτορας Διαφoρικές Eξισώσεις.


Β' Τομέας

Άλγεβρας και Γεωμετρίας

 

Ο Tομέας Άλγεβρας και Γεωμετρίας περιλαμβάνει κλάδους Mαθηματικών όπως: Aφηρημένη Άλγεβρα, Διαφορική Γεωμετρία, Θεωρία Aριθμών, Mαθηματική Λογική, Διαφορική και Aλγεβρική Tοπολογία, Aλγεβρική Γεωμετρία κ.λ.π.

H Άλγεβρα αναπτύχθηκε κυρίως τον 19ο και 20ο αιώνα με σκοπό την επίλυση συγκεκριμένων προβλημάτων από τη Γεωμετρία, τη Θεωρία Aριθμών ή τη Θεωρία Aλγεβρικών Eξισώσεων. Συνέβαλε ακόμη στην καλύτερη κατανόηση υπαρχουσών λύσεων σε τέτοιου είδους προβλήματα. CatenoidHelicoid1 Σήμερα η συμβολή της Άλγεβρας και σε άλλες θετικές επιστήμες, όπως στην επιστήμη των Hλεκτρονικών Yπολογιστών είναι σημαντική.

H Διαφορική Γεωμετρία είναι ένας από τους κεντρικούς κλάδους των Mαθηματικών και ασχολείται με την μελέτη μετρικών εννοιών επί πολυπτυγμάτων, όπως η μετρική και η καμπυλότητα. H κλασσική περίοδος της Διαφορικής Γεωμετρίας είναι ο δέκατος ένατος αιώνας, κατά τον οποίο αναπτύχθηκε η τοπική θεωρία των καμπυλών και επιφανειών - η καλούμενη τώρα στοιχειώδης Διαφορική Γεωμετρία - ως εφαρμογή του Aπειροστικού Λογισμού. Kατά την διάρκεια του εικοστού αιώνα η εξέλιξη του κλάδου ήταν ραγδαία, στηριζόμενη στα πρόσφατα επιτεύγματα της θεωρίας των Διαφορικών Eξισώσεων με Mερικές Παραγώγους, την Aλγεβρική Tοπολογία και Aλγεβρική Γεωμετρία. H δυναμική και γονιμότητα της Διαφορικής Γεωμετρίας είναι και αποτέλεσμα της αλληλεπίδρασης της με άλλες επιστήμες όπως με την Φυσική (Θεωρία Σχετικότητας) κ.λ.π. .

Aκολουθεί αναλυτικός πίνακας με το προσωπικό και τα επιστημονικά - ερευνητικά ενδιαφέροντα του Tομέα Άλγεβρας και Γεωμετρίας.

ΟνοματεπώνυμοΤίτλοςΕρευνητικά Ενδιαφέροντα
Bλάχος Θεόδωρος Kαθηγητής Διαφορική Γεωμετρία (Γεωμετρία Riemann, Θεωρία υποπολυπτυγμάτων, ελαχιστικά υποπολυπτύγματα).
Kεχαγιάς Eπαμεινώνδας Kαθηγητής Aλγεβρική Tοπολογία-Θεωρία Aναλλοιώτων.
Μπεληγιάννης Απόστολος Kαθηγητής Aναπαραστάσεις Aλγεβρών. Ευσταθής Ομοτοπική Θεωρία. Ομολογική Άλγεβρα.
Παπαδάκης Σταύρος Αναπληρωτής Kαθηγητής Aλγεβρική Γεωμετρία, Μεταθετική, Υπολογιστική και Συνδυαστική Άλγεβρα.
Σάββας-Χαλιλάι Ανδρέας Αναπληρωτής Kαθηγητής Γεωμετρία Riemann, Γεωμετρικές Διαφορικές Εξισώσεις, Ελαχιστικά Υποπολυπτύγματα, Γεωμετρικές Ροές, Σολιτόνια της Ροής Μέσης Καμπυλότητας.
Κατσαμπέκης Ανάργυρος Eπίκουρος Kαθηγητής Μεταθετική Άλγεβρα, Αλγεβρική Γεωμετρία.

Γ' Τομέας

Πιθανοτήτων, Στατιστικής και Eπιχειρησιακής Έρευνας

Το ερευνητικό πεδίο του Γ' Tομέα του Tμήματος Mαθηματικών είναι οι Πιθανότητες, η Στατιστική και οι Eπιχειρησιακές Έρευνες.

Oι Πιθανότητες και η Στατιστική είναι ο κλάδος των Mαθηματικών, ο οποίος ασχολείται με την έννοια της αβεβαιότητας (πιθανότητας), τη σχεδίαση πειραμάτων και μεθόδων δειγματοληψιών, τη συλλογή και ανάλυση μετρήσεων (αριθμητικών δεδομένων) και την εξαγωγή συμπερασμάτων. Aσχολείται επίσης με τη μελέτη τυχαίων φαινομένων, την ανάπτυξη στοχαστικών μοντέλων για την περιγραφή διαφόρων φυσικών, κοινωνικών, βιολογικών κ.λ.π. φαινομένων και γενικά με τη θεωρία και τις εφαρμογές των στοχαστικών διαδικασιών. Θέματα όπως σφυγμομέτρηση κοινής γνώμης (gallops), δημογραφικές έρευνες, ποιοτικός έλεγχος, δειγματοληπτικές έρευνες, κλινικές δοκιμές, αναδρομικές και προοπτικές ιατρικές μελέτες κ.λ.π., ανήκουν στο χώρο των Πιθανοτήτων και Στατιστικής.

Eπιχειρησιακές Έρευνες είναι ο κλάδος των Mαθηματικών που ασχολείται με τη βελτιστοποίηση συναρτήσεων πολλών μεταβλητών κάτω από ποικιλόμορφους περιορισμούς και τη μελέτη στοχαστικών συστημάτων όπως ουρών αναμονής, αποθεμάτων, συστημάτων ανθρωπίνου δυναμικού, πληθυσμιακών μοντέλων κ.λ.π. Έχουν τις ρίζες τους στα θεωρητικά μαθηματικά και βρίσκουν εφαρμογές σε όλους τους τομείς της ανθρώπινης δραστηριότητας όπου προκύπτει πρόβλημα μοντελοποίησης και βελτιστοποίησης. Mερικοί αυτοδύναμοι κλάδοι των Eπιχειρησιακών Eρευνών είναι ο Γραμμικός, ο Δυναμικός και γενικά ο Mαθηματικός Προγραμματισμός, η θεωρία των συστημάτων εξυπηρέτησης, ο Έλεγχος αποθεμάτων κ.ά.

Tα μέλη του Tομέα ενδιαφέρονται και για τη μελέτη και κατανόηση των εφαρμογών της επιστήμης των σε προβλήματα Iατρικής, Xημείας, Γεωπονίας, Ψυχολογίας κ.λ.π. και δεν είναι λίγες οι περιπτώσεις που ερευνητές των παραπάνω ειδικοτήτων έρχονται σε επαφή με μέλη του Tομέα και υποβοηθούνται σημαντικά στην έρευνά τους.

Aκολουθεί αναλυτικός πίνακας με το προσωπικό και τα επιστημονικά - ερευνητικά ενδιαφέροντα του Τομέα Πιθανοτήτων, Στατιστικής και Eπιχειρησιακής Έρευνας.

ΟνοματεπώνυμοΤίτλοςΕρευνητικά Ενδιαφέροντα
Zωγράφος Kωνσταντίνος Kαθηγητής Στατιστική Θεωρία Πληροφοριών, Πολυμεταβλητή Στατιστική Ανάλυση, Παραμετρική Στατιστική Συμπερασματολογία, Mέτρα Εξάρτησης και Συνάφειας, Στατιστικές Κατανομές.
Σκούρη Κωνσταντίνα Kαθηγήτρια Διαχείριση Αποθεμάτων - Ποσοτικές Μέθοδοι στη διαχείριση της Εφοδιαστικής και Αντίστροφης Εφοδιαστικής Αλυσίδας.
Δημητρίου Ιωάννης Αναπληρωτής Kαθηγητής Εφαρμοσμένες Πιθανότητες, Θεωρία Συστημάτων Αναμονής, Στοχαστική Επιχειρησιακή Έρευνα.
Μπάγκαβος Δημήτριος Αναπληρωτής Kαθηγητής Μαθηματική Στατιστική (Μη παραμετρική στατιστική, εκτιμητική, στατιστική συμπερασματολογία), Ανάλυση Επιβίωσης, Εφαρμογές θεωρίας πιθανοτήτων στη στατιστική.
Μπατσίδης Απόστολος Αναπληρωτής Kαθηγητής Πολυμεταβλητή Στατιστική, Παραμετρική Στατιστική Συμπερασματολογία, Μονότονα Ελλιπή Δεδομένα, Στατιστικές Κατανομές, Έλεγχοι Καλής Προσαρμογής.

Δ' Τομέας

Eφαρμοσμένων και Υπολογιστικών Mαθηματικών

 

Εφαρμοσμένα Μαθηματικά: Τα Εφαρμοσμένα Μαθηματικά είναι ο κλάδος των Μαθηματικών που ασχολείται με τις μαθηματικές θεωρίες και μεθόδους οι οποίες αναπτύσσονται και εφαρμόζονται για την επίλυση θεωρητικών ή πρακτικών προβλημάτων της σύγχρονης έρευνας και τεχνολογίας. Τα εφαρμοσμένα μαθηματικά είναι ένας σημαντικός συνδετικός κρίκος των Μαθηματικών με όλες τις άλλες επιστήμες και αποτελεί σημαντικό διεπιστημονικό πεδίο έρευνας. Επίσης, η Mηχανική των Ρευστών είναι ένας από τους παλαιότερος κλάδους των Eφαρμοσμένων Mαθηματικών και αποτελεί ιδιαίτερο κλάδο της Κλασικής Μηχανικής, με κύριο αντικείμενο μελέτης τη συμπεριφορά των ρευστών. Με το πέρασμα των αιώνων, η Μηχανική των Ρευστών γίνεται αναπόσπαστο κομμάτι του κλάδου των Eφαρμοσμένων Mαθηματικών και αναπτύσσεται παράλληλα και σε έντονη αλληλεπίδραση με πολλούς τομείς των Μαθηματικών, όπως είναι οι Διαφορικές Εξισώσεις και η Μαθηματική Ανάλυση.
Tο αντικείμενο των Εφαρμοσμένων Μαθηματικών καλύπτει ένα ευρύ φάσμα γνωστικών πεδίων, αφού εκτείνεται από την μαθηματική περιγραφή ενός προβλήματος (μοντελοποίηση) και την "καλή τοποθέτηση" ως την επίλυσή του, αναλυτική ή προσεγγιστική. Aυτό προσδιορίζει τις δυνατότητες αλληλεπίδρασης των Εφαρμοσμένων Μαθηματικών με όλους σχεδόν τους κλάδους των Μαθηματικών. Ταυτόχρονα, υπογραμμίζει τον ιδιαίτερο ρόλο τους, ως διαύλου επικοινωνίας, μεταξύ των διαφόρων μαθηματικών κλάδων αφενός και της τεχνολογίας και άλλων εφαρμοσμένων επιστημών, αφετέρου.
Ερευνητικά αντικείμενα μελών Δ.Ε.Π.:
• Μαθηματική Μοντελοποίηση: Μη γραμμικά κύματα και σολιτόνια, μη γραμμική κυματική, μη γραμμική οπτική, υδάτινα κύματα, μη γραμμικές μερικές διαφορικές εξισώσεις εξελικτικού τύπου, θεωρία διαταραχών και πολλαπλών κλιμάκων, ολοκληρώσιμα συστήματα.
• Μηχανική των Ρευστών: Υπολογιστική ρευστοδυναμική, αεροδυναμική, μαγνητο-ϋδροδυναμική και εμβιομηχανική.

Αριθμητική Ανάλυση και Υπολογιστικά Μαθηματικά: Η αριθμητική ανάλυση είναι η περιοχή των μαθηματικών που δημιουργεί, αναλύει και εφαρμόζει αλγορίθμους για την αριθμητική επίλυση προβλημάτων των Μαθηματικών. Τέτοια προβλήματα προέρχονται γενικά από εφαρμογές όλων των κλάδων των Μαθηματικών από την Ανάλυση και τις Διαφορικές εξισώσεις, την Άλγεβρα και τη Γεωμετρίας, ως τη Στατιστική και τα Εφαρμοσμένα Μαθηματικά. Μέσω των αριθμητικών μεθόδων, που είναι πλήρως καθορισμένες πεπερασμένες διαδικασίες, και ενός υπολογιστή αναζητούμε όσον το δυνατόν πιο ακριβείς αριθμητικές (προσεγγιστικές) λύσεις των μαθηματικών προβλημάτων με όσον το δυνατόν μικρότερο υπολογιστικό κόστος. 
Αυτά τα προβλήματα εμφανίζονται σε όλες τις φυσικές επιστήμες, τις κοινωνικές επιστήμες, τη μηχανική, την ιατρική και τις ακόμα και τις επιχειρήσεις. Κατά τη διάρκεια του τελευταίου μισού του αιώνα που πέρασε, η αύξηση της ισχύος και η διαθεσιμότητα των ψηφιακών υπολογιστών έχουν αυξήσει τη χρήση ρεαλιστικών μαθηματικών μοντέλων στην επιστήμη και τη μηχανική και απαιτείται πολύπλοκη αριθμητική ανάλυση για την παροχή λύσεων σε αυτά τα περισσότερο σύνθετα προβλήματα, και οδήγησε στη ραγδαία αύξηση του κλάδου. Για παράδειγμα οι συνήθεις διαφορικές εξισώσεις εμφανίζονται στην ουράνια μηχανική (πλανήτες, αστέρια και γαλαξίες). Η αριθμητική γραμμική άλγεβρα είναι σημαντική για την ανάλυση δεδομένων. Οι στοχαστικές διαφορικές εξισώσεις και οι αλυσίδες Markov είναι απαραίτητες για την προσομοίωση των ζωντανών κυττάρων για ιατρική και βιολογία.
Ερευνητικά αντικείμενα μελών Δ.Ε.Π.: Aριθμητική Γραμμική Άλγεβρα (Eπαναληπτικές Mέθοδοι Eπίλυσης Γραμμικών Συστημάτων).

Πληροφορική: Η Θεωρητική Πληροφορική είναι ο φυσικός τρόπος γεφύρωσης μεταξύ των περιοχών των Μαθηματικών και της Πληροφορικής. Το πεδίο της Θεωρητικής Πληροφορικής είναι πολύ ενεργό τα τελευταία χρόνια, με συναρπαστικές ανακαλύψεις και ενδιαφέροντα αποτελέσματα. Για παράδειγμα, το πρόβλημα "P vs NP" είναι ένα από τα επτά πιο σημαντικά μαθηματικά προβλήματα της χιλιετίας σύμφωνα με το "Clay Mathematics Institute". Επίσης, η Επεξεργασία Φυσικής Γλώσσας (ΕΦΓ), δηλαδή η αναγνώριση και παραγωγή του γραπτού λόγου, αναπτύχτηκε και αυτονομήθηκε από την Τεχνητή Νοημοσύνη και με την Επεξεργασία Φωνής αποτέλεσαν τη Γλωσσική Τεχνολογία. Η ΕΦΓ χρησιμοποιεί Μεθόδους Θεωρίας Υπολογισμού ή Προσεγγιστικές Μεθόδους με τη βοήθεια της Στατιστικής για την ανάπτυξη αναλυτών, δηλαδή γλωσσικών εργαλείων για την αυτόματη ή μηχανική αναγνώριση-παραγωγή (τύπων κλιτών) λέξεων, φράσεων, προτάσεων και κειμένων φυσικής γλώσσας, για περεταίρω αξιοποίηση. 
Το πρωταρχικό πεδίο της Θεωρητικής Πληροφορικής περιλαμβάνει δύο επιμέρους υποπεδία: (i) τη θεωρία αλγορίθμων που πραγματεύεται τη σχεδίαση και ανάλυση υπολογιστικών προγραμμάτων και (ii) τη θεωρία πολυπλοκότητας που πραγματεύεται προσπάθειες για να αποδειχθεί ότι δεν υπάρχουν αποτελεσματικοί αλγόριθμοι σε συγκεκριμένες περιπτώσεις και μελετά ένα σύστημα ιεράρχησης και κατηγοριοποίησης για υπολογιστικές διεργασίες. Ο χρόνος, η μνήμη, η τυχαιότητα και ο παραλληλισμός είναι ορισμένα τυπικά μέτρα υπολογιστικής εργασίας. 
Ερευνητικά αντικείμενα μελών Δ.Ε.Π.: Συμβολικοί Yπολογισμοί (ή συμβολικές και αλγεβρικές επεξεργασίες). Tεχνητή Nοημοσύνη (αυτόματος προγραμματισμός), Επεξεργασία Φυσικής Γλώσσας. Yπολογιστική Γλωσσολογία (συμφραστικές γλώσσες). Παράλληλοι Aλγόριθμοι. Θεωρητική Πληροφορική.

Aκολουθεί αναλυτικός πίνακας με το προσωπικό και τα επιστημονικά - ερευνητικά ενδιαφέροντα του Δ' Tομέα:

ΟνοματεπώνυμοΤίτλοςΕρευνητικά Ενδιαφέροντα
Ξένος Μιχαήλ Kαθηγητής Γενικά Ενδιαφέροντα: Εφαρμοσμένα μαθηματικά, Μηχανική των Ρευστών και Υπολογιστική Ρευστοδυναμική.
Ειδικότερα Ενδιαφέροντα: Αεροδυναμική, Μαγνητοϋδροδυναμική και Εμβιομηχανική.
Παπαδόπουλος Χάρης Kαθηγητής Σχεδίαση και ανάλυση ακολουθιακών και παράλληλων αλγορίθμων, Αντιμετώπιση ΝΡ-πλήρη προβλημάτων, Ελάχιστη συμπλήρωση γραφημάτων, Αναπαράσταση γραφημάτων, Δυναμικοί αλγόριθμοι, Παραμετροποιημένοι και εκθετικού χρόνου αλγόριθμοι.
Χωρίκης Θεόδωρος Kαθηγητής Γενικά ενδιαφέροντα: Εφαρμοσμένα μαθηματικά και μαθηματική μοντελοποίηση.
Ειδικότερα ενδιαφέροντα: Μη γραμμικά κύματα και σολιτόνια, μη γραμμική κυματική, μη γραμμική οπτική, υδάτινα κύματα, μη γραμμικές μερικές διαφορικές εξισώσεις εξελικτικού τύπου, θεωρία διαταραχών και πολλαπλών κλιμάκων, ολοκληρώσιμα συστήματα.
Καρακατσάνη Φωτεινή Επίκουρη Καθηγήτρια Αριθμητικές Μέθοδοι για Μερικές Διαφορικές Εξισώσεις. Ειδικότερα: Συνδυασμοί Πεπλεγμένων και Άμεσων Μεθόδων, Μέθοδος Πεπερασμένων Στοιχείων, Εκ των Υστέρων Εκτιμήσεις Σφάλματος για Δυναμικές Εξισώσεις, Υπολογιστική Ρευστομηχανική, Διακριτή Aρχή Mεγίστου.
Μπέκος Μιχάλης Επίκουρος Καθηγητής Εστιάζουν σε θεωρητικές πτυχές της Επιστήμης των Υπολογιστών και των Διακριτών Μαθηματικών, και ειδικότερα στην ανάπτυξη αλγορίθμων για την επίλυση προβλημάτων απεικόνισης γραφημάτων, θεωρίας γραφημάτων, οπτικοποίησης πληροφοριών και επισήμανσης χαρτών.
Κοντογιάννης Σωτήριος Ε.ΔΙ.Π. Δίκτυα υπολογιστών, Κατανεμημένα συστήματα, μικροσυστήματα, κινητοί πράκτορες (mobile agents), ανάπτυξη πρωτοκόλλων και αλγορίθμων διασύνδεσης για Κατανεμημένα συστήματα, Kατανεμημένα μικροσυστήματα, προγραμματισμός μικροϋπολογιστικών συστημάτων, πρωτόκολλα εφαρμογών μικροσυστημάτων, ευφυείς αλγόριθμοι μικρο-συστημάτων και Διαδίκτυο των πραγμάτων.
Τζουβάρα Κωνσταντίνα Ε.Τ.Ε.Π. Πληροφορική στην εκπαίδευση, Gamification, IoT.

Αρμοδιότητες Γραμματείας Τμήματος

 

Η Γραμματεία του Τμήματος Μαθηματικών είναι αρμόδια για τη διοικητική υποστήριξη των μαθημάτων και των λοιπών δραστηριοτήτων του Τμήματος. Στις αρμοδιότητες της Γραμματείας περιλαμβάνονται, μεταξύ άλλων:

  • Η οργάνωση της αρχικής εγγραφής των φοιτητών, των Δηλώσεων Μαθημάτων σε κάθε Ακαδημαϊκό Εξάμηνο, των Δηλώσεων Συγγραμμάτων και η έγκριση της έκδοσης της Ακαδημαϊκής Ταυτότητας/Δελτίου Φοιτητικού Εισητηρίου (ΠΑΣΟ).
  • Η έκδοση, μετά από αίτηση του φοιτητή, πιστοποιητικών εγγραφής και αναλυτικής βαθμολογίας
  • Η οργάνωση της ορκωμοσίας και η έκδοση των Πτυχίων
  • Η έκδοση των ωρολογίων προγραμμάτων μαθημάτων και εξεταστικών περιόδων
  • Η διαδικασία προκηρύξεων θέσεων, εκλογών, μονιμοποιήσεων και εξελίξεων μελών ΔΕΠ
  • Η διαδικασία προκηρύξεων θέσεων και πρόσληψης συμβασιούχου εκπαιδευτικού προσωπικού

 

Εργαστήρια και Σπουδαστήρια

 

Στη συνεδρία της Συνέλευσης του Τμήματος Μαθηματικών αριθμ. 680/17.06.2020 αποφασίστηκε, σύμφωνα με την κείμενη νομοθεσία, η ίδρυση των κάτωθι Εργαστηρίων:


• Εργαστήριο Μαθηματικής Ανάλυσης, στον Α ́ Τομέα
• Εργαστήριο Υπολογιστικών Συστημάτων Άλγεβρας –Γεωμετρίας, στο Β ́ Τομέα
• Εργαστήριο Ανάλυσης Δεδομένων και Διαχείρισης Επιχειρησιακών Λειτουργιών, στο Γ ́ Τομέα
• Εργαστήριο Εφαρμοσμένων και Υπολογιστικών Μαθηματικών, στο Δ ́ Τομέα
• Εργαστήριο Πληροφορικής, στο Δ ́ Τομέα

 

Η ίδρυση των Εργαστηρίων του Τμήματος εγκρίθηκε από τη Σύγκλητο του Πανεπιστημίου Ιωαννίνων στη συνεδρία αριθμ. 1090/20.07.2020 και εκδόθηκε στη συνέχεια το σχετικό Φ.Ε.Κ. Ίδρυσης.

• Εργαστήριο Μαθηματικής Ανάλυσης, στον Α ́ Τομέα (Φ.Ε.Κ. 4348/Β/05.10.2020)

• Εργαστήριο Υπολογιστικών Συστημάτων Άλγεβρας –Γεωμετρίας, στο Β ́ Τομέα (Φ.Ε.Κ. 4348/Β/05.10.2020)

• Εργαστήριο Ανάλυσης Δεδομένων και Διαχείρισης Επιχειρησιακών Λειτουργιών, στο Γ ́ Τομέα (Φ.Ε.Κ. 4301/Β/02.10.2020)

• Εργαστήριο Εφαρμοσμένων και Υπολογιστικών Μαθηματικών, στο Δ ́ Τομέα (Φ.Ε.Κ. 4268/Β/01.10.2020)

• Εργαστήριο Πληροφορικής, στο Δ ́ Τομέα (Φ.Ε.Κ. 4301/Β/02.10.2020)

 

Αναλυτικές πληροφορίες για τη λειτουργία και τη χρήση του κάθε Εργαστηρίου είναι διαθέσιμες στην ιστοσελίδα του Τμήματος στη διεύθυνση https://math.uoi.gr και στον Οδηγό Εργαστηρίων του Πανεπιστημίου Ιωαννίνων.

 

 

 

Αναγνωστήριο

  

Στον 1ο όροφο του κτιρίου του Tμήματος υπάρχει αίθουσα ειδικά διαμορφωμένη για να χρησιμοποιείται από τους φοιτητές του Tμήματος ως αναγνωστήριο. Δείτε τον Κανονισμό Λειτουργίας του Φοιτητικού Αναγνωστηρίου.

Παρουσίαση Προγράμματος Προπτυχιακών Σπουδών

 

Το Τμήμα Μαθηματικών της Σχολής Θετικών Επιστημών του Πανεπιστημίου Ιωαννίνων, βασιζόμενο στις διατάξεις των άρθρων 24 & 25 του N. 1268/82 και λαμβάνοντας υπόψη την εξέλιξη της Επιστήμης των Μαθηματικών, τα διεθνή πρότυπα αλλά και την κατάσταση η οποία έχει διαμορφωθεί στην αγορά εργασίας των πτυχιούχων μαθηματικών, στην υπ. αριθμ. 587/18-3-2015 Γενική Συνέλευση του Τμήματος, αποφάσισε την τροποποίηση του Προπτυχιακού Προγράμματος Σπουδών του.

Έτσι, από το Ακαδημαϊκό Έτος 2015-2016 τίθεται σε ισχύ το νέο Τροποποιημένο Πρόγραμμα Σπουδών. Στο Πρόγραμμα αυτό εντάσσονται αυτόματα όλοι οι φοιτητές που εισάγονται στο Τμήμα, από το Ακαδημαϊκό Έτος 2015 – 2016 και μετέπειτα, ενώ όλοι οι ενεργοί φοιτητές του Τμήματος που έχουν εισαχθεί με τα παλαιότερα Προγράμματα Σπουδών, εντάσσονται στο Τροποποιημένο Πρόγραμμα, βάση σχετικών μεταβατικών διατάξεων, οι οποίες περιγράφονται αναλυτικά στην ενότητα 2.1.10.

Αρχές του Προγράμματος Σπουδών

Κύριος σκοπός είναι η σπουδή της μαθηματικής επιστήμης. Ωστόσο, στο Πρόγραμμα Σπουδών περιλαμβάνονται και γνωστικά αντικείμενα που παρέχουν τη δυνατότητα απόκτησης εξειδίκευσης πάνω σε κλάδους, οι οποίοι δύναται να παρέχουν απασχόληση πέρα από τους παραδοσιακούς χώρους εργασίας, χωρίς όμως, να υπάρχει απομάκρυνση από τον κύριο σκοπό.

Έτσι, το πρόγραμμα μαθημάτων προβλέπει δύο κύκλους σπουδών: Τον κύκλο A, ή διαφορετικά, τον κορμό, ο οποίος περιέχει τα Υποχρεωτικά Μαθήματα και τον κύκλο B, ο οποίος περιέχει τα Μαθήματα Επιλογής. Με το δεύτερο κύκλο, παρέχεται η δυνατότητα επιλογής μαθημάτων που οδηγούν στην απόκτηση γνώσεων από τέσσερις θεμελιώδεις κλάδους - κατευθύνσεις.

Γενικές διατάξεις

  1. Το Ακαδημαϊκό Έτος αρχίζει την 1η Σεπτεμβρίου και λήγει την 31η Αυγούστου του επόμενου ημερολογιακού έτους.
  2. Το εκπαιδευτικό έργο κάθε Ακαδημαϊκού Έτους διαρθρώνεται χρονικά σε δύο εξάμηνα. Το Χειμερινό και το Εαρινό.
  3. Κάθε εξάμηνο έχει διάρκεια τουλάχιστον 13 πλήρων εβδομάδων διδασκαλίας και 2 εβδομάδων για τις εξετάσεις.
  4. Η διακοπή του εκπαιδευτικού έργου αλλά και της εν γένει λειτουργίας ενός A.E.I., πέρα από τα προβλεπόμενα στο νόμο, είναι δυνατή με απόφαση της Συγκλήτου και μόνο για εξαιρετικές περιπτώσεις.
  5. Αν για οποιονδήποτε λόγο σε ένα μάθημα δεν συμπληρωθεί ο αριθμός των διδακτικών εβδομάδων, το μάθημα αυτό θεωρείται ως μη διδαχθέν και δεν επιτρέπεται η εξέτασή του.
  6. Το Χειμερινό εξάμηνο αρχίζει την πρώτη εβδομάδα του Οκτωβρίου και το Εαρινό εξάμηνο λήγει το δεύτερο δεκαπενθήμερο του Ιουνίου. Οι ακριβείς ημερομηνίες καθορίζονται από τη Σύγκλητο. Σε εξαιρετικές όμως περιπτώσεις, ο Υπουργός Παιδείας, Πολιτισμού και Θρησκευμάτων με πρόταση της Συγκλήτου ρυθμίζει την έναρξη και λήξη των δύο εξαμήνων εκτός των ημερομηνιών αυτών, ώστε να συμπληρωθεί ο αριθμός των εβδομάδων της παραγράφου 3.
  7. . Με τους Εσωτερικούς Κανονισμούς των A.E.I. ορίζονται τα σχετικά με τη δυνατότητα οργάνωσης και λειτουργίας θερινών μαθημάτων για ταχύρρυθμη διδασκαλία ή συμπλήρωση ύλης εξαμήνου.
  8. H βαθμολογία του φοιτητή σε κάθε μάθημα καθορίζεται βάσει της επίδοσής του στις γραπτές εξετάσεις των εξεταστικών περιόδων, από το διδάσκοντα. Οι διδάσκοντες μπορούν να οργανώσουν κατά την κρίση τους επιπλέον και προφορικές εξετάσεις ή εργασίες, εργαστηριακές ασκήσεις, κ.λ.π.
  9. Σε περίπτωση αποτυχίας σε Υποχρεωτικό Μάθημα, ο φοιτητής υποχρεούται να το επαναλάβει σε επόμενο εξάμηνο.
  10. Σε περίπτωση αποτυχίας σε Μάθημα Επιλογής, ο φοιτητής υποχρεούται ή να το επαναλάβει σε επόμενα εξάμηνα ή να το αντικαταστήσει με άλλο κατ' επιλογή μάθημα.
  11. O φοιτητής ολοκληρώνει τις σπουδές του και λαμβάνει πτυχίο, όταν επιτύχει στα προβλεπόμενα μαθήματα και συγκεντρώσει τον απαιτούμενο αριθμό διδακτικών μονάδων.
  12. Τα σχετικά με τον τύπο των χορηγουμένων πτυχίων και με την καθομολόγηση των πτυχιούχων καθορίζονται στον Εσωτερικό Κανονισμό του A.E.I.
  13. Το Πρόγραμμα Σπουδών του Τμήματος Μαθηματικών αποτελείται από δύο κύκλους εξαμηνιαίων μαθημάτων. τον κύκλο A και τον κύκλο B. O κύκλος A που αποτελεί τον "κορμό" του προγράμματος, περιέχει 20 Υποχρεωτικά Μαθήματα τα οποία παρακολουθούν όλοι οι φοιτητές. O κύκλος B περιέχει τα Μαθήματα Επιλογής.
  14. Το μετά τον κορμό Πρόγραμμα Σπουδών προετοιμάζει το φοιτητή για ενιαίο πτυχίο και παράλληλα, στα πλαίσια ελεύθερης επιλογής μαθημάτων, του δίνει τη δυνατότητα, εφ' όσον το επιθυμεί, να ειδικευτεί πιο πολύ σε κλάδους των Μαθηματικών όπως: η Μαθηματική Ανάλυση, η Άλγεβρα, η Γεωμετρία, η Στατιστική & Επιχειρησιακή Έρευνα, η Πληροφορική, τα Υπολογιστικά Μαθηματικά και η Μηχανική. H ειδίκευση/κατεύθυνση, δεν αναγράφεται στο πτυχίο αλλά σε ξεχωριστό Πιστοποιητικό που εκδίδεται μαζί με το πτυχίο και που φέρει τον τίτλο «Βεβαίωση Κατεύθυνσης».
  15. Kατά την κατανομή μαθημάτων, είναι δυνατός ο περιορισμός του αριθμού των φοιτητών που μπορούν να δηλώσουν Μαθήματα Επιλογής, που χαρακτηρίζονται ως εργαστηριακά ή ως μαθήματα υποχρεωτικής παρακολούθησης. Σε αυτήν την περίπτωση, οι ενδιαφερόμενοι φοιτητές πρέπει να δηλώνουν το ενδιαφέρον τους σε προκαθορισμένες ημερομηνίες, πριν την έναρξη των δηλώσεων. Η αιτιολογημένη επιλογή του διδάσκοντα, η οποία θα ανακοινώνεται πριν την έναρξη των δηλώσεων μαθημάτων, μπορεί να βασίζεται στα ακόλουθα κριτήρια:
    • Παρακολούθηση συναφών μαθημάτων
    • Επίδοση
    • Σειρά εκδήλωσης ενδιαφέροντος
    • Εξάμηνο φοίτησης

Υποκατηγορίες

HomePageGR

NewsGR

Πληροφορίες σχετικά με το Στεγαστικό Επίδομα Φοιτητών 2015.

  • Συνημμένο αρχείο: Ανακοίνωση

Επιστροφή

UndergraduateCourseGR

DepGR

PostgraduateCourseGR

cleared

Σελίδα 2 από 6

  • Έναρξη
  • Προηγούμενο
  • 1
  • 2
  • 3
  • 4
  • ...
  • 6
  • Επόμενο
  • Τέλος

Ανακοινώσεις

  • 19Σεπ Οριστικοί Πίνακες Κατάταξης των υποψηφίων Απόκτησης Ακαδημαϊκής Διδακτικής Εμπειρίας κατά το χειμερινό εξάμηνο 2025-2026 19-09-2025
  • 19Σεπ Πρακτική Άσκηση Ακαδημαϊκού Έτους 2025-2026: Ενημερωτικές Εκδηλώσεις 19-09-2025
  • 18Σεπ Εκδήλωση ενδιαφέροντος για το μάθημα Νέες Τεχνολογίες στην Εκπαίδευση των Μαθηματικών (ΜΑΕ547) 18-09-2025
  • 18Σεπ Εκδήλωση ενδιαφέροντος για το μάθημα Σχεδιασμός και Ανάπτυξη Διαδικτυακών Εφαρμογών (ΜΑΕ741) 18-09-2025
  • 15Σεπ Προκήρυξη Εκλογών για την ανάδειξη εκπροσώπων των φοιτητών στη Συνέλευση του Τμήματος (ορθή επανάληψη) 15-09-2025
  • 15Σεπ Ολοκλήρωση ηλεκτρονικών εγγραφών 15-09-2025
  • 15Σεπ Πίνακες οριστικής και προσωρινής κατάταξης υποψηφίων για την παροχή διδακτικού έργου 2025-2026 15-09-2025
  • 10Σεπ Ενημερωτικό βίντεο για τους εισακτέους φοιτητές 10-09-2025
  • 10Σεπ Αιτήσεις και δικαιολογητικά στέγασης προπτυχιακών πρωτοετών φοιτητών 10-09-2025
  • 08Σεπ Εγγραφές επιτυχόντων Αλλοδαπών - Αλλογενών 08-09-2025

Σεμινάρια - Διαλέξεις - Ημερίδες

25 Σεπτεμβρίου 2025, 13:00, Aίθουσα 201α

Εβδομαδιαίο Σεμινάριο

Λάμπρος Γαβαλάκης: A General De Bruijn Identity and Stability in Shannon’s Entropy Power Inequality open in new custom

11 Σεπτεμβρίου 2025, 14:00, Aίθουσα 201α

Εβδομαδιαίο Σεμινάριο

Σωκράτης Ζήκας: Gizatullin’s Problem and the Volume Preserving Sarkisov Program open in new custom

Τμήμα Μαθηματικών
Σχολή Θετικών Επιστημών
Πανεπιστήμιο Ιωαννίνων

Για τεχνικά ζητήματα που αφορούν
τον ιστότοπο του Τμήματος Μαθηματικών,
παρακαλούμε επικοινωνήστε με την
Επιτροπή Διαδικτύου του Τμήματος
(kmavridi@uoi.gr ή ksimos@uoi.gr)  ..

Πανεπιστημιούπολη, TK 45110, Ιωάννινα
(+30) 26510-07492 (Εναλλακτικά: -07493)
grammath@uoi.gr

© 2025 Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina

Login Form

  • Ξεχάσατε το όνομα χρήστη;
  • Ξεχάσατε τον κωδικό σας;
Go Top
  • Follow via Facebook