• Αρχική
  • Τμήμα
    • Ταυτότητα Τμήματος - Αποφοίτων
    • Βίντεο Παρουσίασης Τμήματος
    • Φυλλάδιο Παρουσίασης Τμήματος
    • Διοίκηση
    • Τομείς
      • Mαθηματικής Aνάλυσης
      • Άλγεβρας και Γεωμετρίας
      • Πιθανοτήτων, Στατιστικής και Eπιχειρησιακής Έρευνας
      • Eφαρμοσμένων και Υπολογιστικών Mαθηματικών
    • Γραμματεία
      • Αρμοδιότητες
      • Διαδικασία Αιτημάτων Φοιτητών
      • Ενεργοποίηση Ιδρυματικού Λογαριασμού Φοιτητή
    • Εργαστήρια - Σπουδαστήρια
    • Αναγνωστήριο
  • Σπουδές
    • Οδηγοί Σπουδών
    • Οδηγός για Πρωτοετείς Φοιτητές
    • Προπτυχιακές Σπουδές
      • Μαθήματα και Διδάσκοντες
      • Σύμβουλοι Σπουδών
      • Παρουσίαση Προγράμματος Προπτυχιακών Σπουδών
      • Κανονισμοί
      • Εκπόνηση Πτυχιακής Εργασίας
      • Σεμιναριακά Μαθήματα
      • Κατατακτήριες Εξετάσεις
    • Μεταπτυχιακές Σπουδές
      • Μαθήματα και Διδάσκοντες
      • Πρόσληψη Μεταπτυχιακών Φοιτητών
      • Παρουσίαση Προγράμματος Μεταπτυχιακών Σπουδών
      • Κανονισμοί
      • Έντυπα και Πρότυπα
      • Κατάλογος Μεταπτυχιακών Διατριβών
    • Διδακτορικές Σπουδές
      • Πρόσληψη Υποψηφίων Διδακτόρων
      • Παρουσίαση Προγράμματος Διδακτορικών Σπουδών
      • Έντυπα και Πρότυπα
      • Κατάλογος Κατόχων Διδακτορικού Διπλώματος
      • Κατάλογος Διδακτορικών Διατριβών
    • Μεταδιδακτορική Έρευνα
      • Κανονισμός
      • Σχετικά με τη Μεταδιδακτορική Έρευνα
    • Πρακτική Άσκηση
    • Erasmus+
      • Πρόγραμμα Erasmus+
      • Διμερείς Συμφωνίες
      • Κανονισμοί
    • Υποστήριξη ΦμεΑ
    • Κανονισμοί Τμήματος
    • Ακαδημαϊκό Ημερολόγιο
  • Προσωπικό
    • Αναζήτηση
    • Μέλη Δ.Ε.Π.
    • Ομότιμοι Καθηγητές
    • Διατελέσαντες ως μέλη ΔΕΠ
    • Συμβασιούχοι Διδάσκοντες
    • Επίτιμοι Διδάκτορες
    • Επισκέπτες Τμήματος
      • Κανονισμός
    • Εργαστηριακό Προσωπικό
    • Διοικητικό Προσωπικό
    • Υποψήφιοι Διδάκτορες Ph.D.
    • Μεταπτυχιακοί Φοιτητές Msc.
    • Προκηρύξεις Θέσεων
    • Χρήσιμα Έντυπα για το Προσωπικό
    • Θεανώ
  • Διασφάλιση Ποιότητας
    • Πρόγραμμα Προπτυχιακών Σπουδών
      • Πιστοποίηση
      • Πολιτική Ποιότητας
      • Στοχοθεσία
    • Πρόγραμμα Μεταπτυχιακών Σπουδών
      • Πολιτική Ποιότητας
      • Στοχοθεσία
    • Στρατηγικός Σχεδιασμός
    • Αξιολογήσεις
  • Σύνδεσμοι
    • DocuGate
    • Εύδοξος
    • ClassWeb
    • eCourse
    • Ακαδημαϊκή Ταυτότητα
    • Στεγαστικό Επίδομα
    • Έντυπα για Φοιτητές
    • ΣΚΕΠΙ
    • ΔΑΣΤΑ
    • Κεντρική Βιβλιοθήκη
    • ΜΟΔΙΠ
    • Τεχνικές Αναφορές (1999 - 2016)
  • Επικοινωνία
  • Απόφοιτοι

×

Search
uoi bird
Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina
  • Ελληνικά
  • English
Saturday, 24 Μαΐου 2025
Προπτυχιακές Σπουδές
Οδηγός Σπουδών
Οδηγός Πρωτοετών
  • Ενοποιημένο πρόγραμμα διδασκαλίας και εξετάσεων 2024-2025
Μεταπτυχιακές Σπουδές
  • Προκήρυξη Πρόσληψης Μεταπτυχιακών Φοιτητών 
  • Πρόγραμμα Διδασκαλίας ΕΑΡ 2025 

  • Αρχική /
  • Greek /
  • UndergraduateCourseGR

Τμήμα Μαθηματικών

Το Τμήμα Μαθηματικών είναι το δεύτερο σε σειρά αρχαιότητας Τμήμα του Πανεπιστημίου Ιωαννίνων. Ιδρύθηκε το 1966 στην πόλη των Ιωαννίνων, συνιστά από κοινού με τα Τμήματα Φυσικής και Χημείας τη Σχολή Θετικών Επιστημών και στεγάζεται στο κτίριο του Τμήματος Μαθηματικών, στη βορειοδυτική πλευρά της Πανεπιστημιούπολης.

Στην 50-ετή και πλέον εξελικτική του πορεία, το Τμήμα Μαθηματικών, πέρασε από διάφορα στάδια ανάπτυξης. Σήμερα, διαδραματίζει ένα σημαντικό ρόλο στο επιστημονικό γίγνεσθαι, όχι μόνο της περιοχής των Ιωαννίνων και της Ηπείρου ευρύτερα, αλλά της χώρας, γενικότερα. Το ερευνητικό του έργο και η ερευνητική του παρουσία αναγνωρίζεται διεθνώς, ενώ το πρόγραμμα σπουδών του, προπτυχιακό και μεταπτυχιακό, χαρακτηρίζεται από πλουραλισμό και καλύπτει όλους τους σύγχρονους κλάδους της μαθηματικής επιστήμης. Θα λέγαμε, λοιπόν, ότι το Τμήμα Μαθηματικών συμβάλλει τα μέγιστα, στην επιστημονική κατάρτιση των φοιτητών του και τους δίνει τη δυνατότητα να οικοδομήσουν το προφίλ του μαθηματικού που επιθυμούν, συνεισφέροντας, με τον τρόπο αυτό και στο βαθμό που του αναλογεί, στην επαγγελματική αποκατάσταση των αποφοίτων του.

Ευχόμαστε στους επισκέπτες μας καλή πλοήγηση και είμαστε στη διάθεσή τους για οποιαδήποτε πληροφορία σχετική με τη λειτουργία του Τμήματος.

ΜΑE541 - Δομές Δεδομένων

Περιγραφή

Στοιχεία Πολυπλοκότητας Αλγορίθμων. Αφηρημένοι Τύποι Δεδομένων. Πίνακες. Αλυσίδες. Λίστες (Απλά Συνδεδεμένες Λίστες, Διπλά Συνδεδεμένες Λίστες, Κυκλικές Λίστες, Γενικευμένες Λίστες), Στοίβες, Ουρές, Διπλο-ουρές, Ουρές Προτεραιότητας. Δένδρα (Γενικά Δένδρα, Δυαδικά Δένδρα, Δυαδικά Δένδρα Αναζήτησης, Οπισθοσυνδεδεμένα Δένδρα, Σωροί, AVL-Δένδρα, 2-3 Δένδρα, 2-3-4 Δένδρα, Β-Δένδρα). Κατευθυνόμενοι Γράφοι, Μη Κατευθυνόμενοι Γράφοι. Χειρισμός Συνόλων. Κατακερματισμός. Δυναμική Διαχείριση Μνήμης. Αναζήτηση. Ταξινόμηση.

Εργαστήριο.

Διδάσκοντες

  • Ν. Γλυνός

Περίγραμμα Μαθήματος

ΜΑE545 - Αριθμητική Γραμμική Άλγεβρα

Περιγραφή

Στοιχεία από τη θεωρία Πινάκων. Ευστάθεια Γραμμικών Συστημάτων. Άμεσες Μέθοδοι: Μέθοδος Απαλοιφής Gauss, LU Ανάλυση, LDU Ανάλυση (Crout). Ανάλυση Cholesky. Επαναληπτικές μέθοδοι: Μέθοδος Jacobi, μέθοδος Gauss-Seidel, μέθοδος SOR. Αριθμητική εύρεση Ιδιοτιμών και Ιδιοδιανυσμάτων: Μέθοδος Δυνάμεων, μέθοδος QR, μέθοδος LR.

Διδάσκοντες

  • Δ. Νούτσος

Περίγραμμα Μαθήματος

ΜΑE613 - Ολοκληρωτικές Εξισώσεις

Περιγραφή

Ταξινόμηση των Ολοκληρωτικών Εξισώσεων. Μερικές σημαντικές ταυτότητες. Αναγωγή προβλημάτων σε ολοκληρωτικές εξισώσεις.

Ολοκληρωτικοί Μετασχηματισμοί: Μετασχηματισμοί Laplace, Μετασχηματισμοί Laplace μερικών ειδικών συναρτήσεων, Εφαρμογές των Μετασχηματισμών Laplace στις Διαφορικές Εξισώσεις, Άλλοι Ολοκληρωτικοί Μετασχηματισμοί (Fourier, Hilbert, Mellin).

Ολοκληρωτικές Εξισώσεις Volterra: Ολοκληρωτικές Εξισώσεις Volterra β’ είδους, Σειρές Neumann, Μέθοδος των διαδοχικών προσεγγίσεων, Μέθοδος του Μετασχηματισμού Laplace, Πυρήνας διαφοράς, Ολοκληρωτικές Εξισώσεις Volterra α’ είδους.

Ολοκληρωτικές Εξισώσεις Fredholm: Εξισώσεις με διαχωρίσιμο πυρήνα, Fredholm Alternative. Ολοκληρωτικές εξισώσεις Fredholm με συμμετρικό πυρήνα, Κλασσική Θεωρία Fredholm.

Συναρτήσεις Green: Μη ομογενείς συνήθεις διαφορικές εξισώσεις, Κατασκευή των Συναρτήσεων Green.

Ύπαρξη των λύσεων-Βασικά Θεωρήματα σταθερού σημείου: Χώροι Banach, Χώροι Hilbert, Θεώρημα σταθερού σημείου του Banach, Εφαρμογές του Θεωρήματος σταθερού σημείου του Banach σε προβλήματα αρχικών τιμών για ολοκληρωτικές εξισώσεις, Φραγμένοι γραμμικοί τελεστές, Συμπαγείς και πλήρως συνεχείς τελεστές, Εφαρμογές σε προβλήματα αρχικών τιμών για ολοκληρωτικές εξισώσεις.

Διδάσκοντες

  • Συμβασιούχος Διδάσκων

Περίγραμμα Μαθήματος

ΜΑΥ611 - Μιγαδικές Συναρτήσεις Ι

Περιγραφή

Ορισμός του συνόλου των Μιγαδικών Αριθμών. Το Μιγαδικό Επίπεδο. Ρίζες μιγαδικών αριθμών. Ευθύγραμμα Τμήματα. Τοπολογία. Σύγκλιση. Η Σφαίρα του Riemann. Αναλυτικές Ιδιότητες Συναρτήσεων. Δυναμοσειρές. Στοιχειώδεις Μιγαδικές Συναρτήσεις (Ρητές, η Εκθετική Συνάρτηση, οι Τριγωνομετρικές, οι Υπερβολικές, ο Λογάριθμος, η Δύναμη, η Γενική Εκθετική Συνάρτηση). Καμπύλες. Σύμμορφες Απεικονίσεις. Ομοτοπικές Καμπύλες. Επικαμπύλια Ολοκληρώματα. Τοπικές Ιδιότητες Συναρτήσεων. Βασικά Θεωρήματα. Σειρές taylor. Διατήρηση Ολοκληρωμάτων. Δείκτης Στροφής. Γενικά Συμπεράσματα. Ανώμαλα Σημεία (πόλοι, κλπ.). Σειρές Laurent. Ολοκληρωτικά Υπόλοιπα. Θεώρημα του Cauchy για τα Ολοκληρωτικά Υπόλοιπα (Ολοκλήρωμα Τριγωνομετρικών Συναρτήσεων, Ολοκλήρωμα Γενικευμένο στο Άπειρο, Ειδικές Περιπτώσεις).

Διδάσκοντες

  • Ι. Γιαννούλης

Περίγραμμα Μαθήματος

ΜΑΥ648 - Κλασική Μηχανική

Περιγραφή

Επανάληψη-σύνδεση μέσω φυσικών εννοιών με τα βασικά εργαλεία: εμβαδά, μάζα και πυκνότητα, ροπές αδράνειας και κέντρο μάζας. Στοιχεία διαφορικών εξισώσεων και οι βασικές έννοιες της μηχανικής (ο χώρος, ο χρόνος και το υλικό σημείο). Αξιώματα του Νεύτωνα και η έννοια της δύναμης. Βασικές έννοιες και θεωρήματα της ανάλυσης, Γραμμική κίνηση, Ενέργεια και στροφορμή, Κεντρικές δυνάμεις, Συστήματα πολλών σωμάτων, Μηχανική κατά Langrange, Χαμιλτονιανή Μηχανική.

Διδάσκοντες

  • Μ. Ξένος

Περίγραμμα Μαθήματος

ΜΑE614 - Διαφορικές Εξισώσεις Ι

Περιγραφή

Συνήθεις διαφορικές εξισώσεις: Ύπαρξη, μονοσήμαντο και έκταση λύσεων προβλημάτων αρχικών τιμών.

Θεωρία γραμμικών διαφορικών συστημάτων: Oμογενή γραμμικά διαφορικά συστήματα. Mη ομογενή γραμμικά διαφορικά συστήματα. Oμογενή γραμμικά διαφορικά συστήματα με σταθερούς συντελεστές. Eυστάθεια των γραμμικών διαφορικών συστημάτων. Γραμμικές διαφορικές εξισώσεις αυθαίρετης τάξης. Eφαρμογές των συνήθων διαφορικών εξισώσεων.

Διδάσκοντες

  • Ι. Πουρναράς

Περίγραμμα Μαθήματος

ΜΑE623 - Γεωμετρία Μετασχηματισμών

Περιγραφή

Διερεύνηση της δευτεροβάθμιας εξίσωσης στο επίπεδο και στο χώρο. Επίπεδες αλγεβρικές Καμπύλες. Γεωμετρικοί Μετασχηματισμοί του επιπέδου και του χώρου. Ισομετρίες. Εφαρμογές.

Διδάσκοντες

  • Συμβασιούχος Διδάσκων

Περίγραμμα Μαθήματος

ΜΑE624 - Στοιχεία Ολικής Διαφορικής Γεωμετρίας

Περιγραφή

Καμπύλες: Κυρτές καμπύλες. Θεώρημα των τεσσάρων κορυφών. Ισοπεριμετρικό πρόβλημα.

Επιφάνειες: Εξισώσεις Codazzi. Θεώρημα Liebmann. Γεωδαιτική καμπυλότητα. Γεωδαιτικές γραμμές. Επιφάνειες σταθερής καμπυλότητας. Θεώρημα Gauss-Bonnet.

Διδάσκοντες

  • Θ. Βλάχος

Περίγραμμα Μαθήματος

Σελίδα 4 από 8

  • Έναρξη
  • Προηγούμενο
  • 1
  • 2
  • 3
  • 4
  • ...
  • 6
  • 7
  • 8
  • Επόμενο
  • Τέλος

Ανακοινώσεις

  • 20Μάι Προκήρυξη Πρόσληψης Μεταπτυχιακών Φοιτητών (2025-2026) 20-05-2025
  • 20Μάι Ενημερωτική συνάντηση ERASMUS και ARTEMIS 20-05-2025
  • 17Μάι Ημέρα Καριέρας 2025 17-05-2025
  • 17Μάι Αιτήσεις στέγασης στις Φοιτητικές Κατοικίες του Πανεπιστημίου Ιωαννίνων 17-05-2025
  • 15Μάι Ανακήρυξη Υποψηφίου - Εκλογές για την Ανάδειξη Εκπρόσωπου ΕΤΕΠ στη Συνέλευση του Τμήματος 15-05-2025
  • 12Μάι Ανακήρυξη Υποψηφίου - Εκλογές για την Ανάδειξη Εκπρόσωπου ΕΔΙΠ στη Συνέλευση του Τμήματος 12-05-2025
  • 12Μάι Συνέδριο "Discrete and Applied Fourier Analysis" - ΑΠΘ - 02 Ιουνίου 2025 12-05-2025
  • 10Μάι Παράταση δήλωσης και διανομής ακαδημαϊκών συγγραμμάτων (2024-2025 εαρινό) 10-05-2025
  • 08Μάι Προκήρυξη Εκλογών για την Ανάδειξη Προέδρου και Αναπληρωτή Προέδρου του Τμήματος Μαθηματικών (θητεία: 01-09-2025 έως 31-08-2028) 08-05-2025
  • 08Μάι Αξιολογήσεις Προπτυχιακών και Μεταπτυχιακών Μαθημάτων εαρινού εξαμήνου 2024 - 2025 08-05-2025

Σεμινάρια - Διαλέξεις - Ημερίδες

22 Μαΐου 2025, 14:00, Αμφιθέατρο 3

Λέσχη Μαθηματικών

Γεώργιος Ακρίβης: Μεγιστική ομαλότητα: μια στοιχειώδης εισαγωγή open in new custom

Τμήμα Μαθηματικών
Σχολή Θετικών Επιστημών
Πανεπιστήμιο Ιωαννίνων

Για τεχνικά ζητήματα που αφορούν
τον ιστότοπο του Τμήματος Μαθηματικών,
παρακαλούμε επικοινωνήστε με την
Επιτροπή Διαδικτύου του Τμήματος
(kmavridi@uoi.gr ή ksimos@uoi.gr)  ..

Πανεπιστημιούπολη, TK 45110, Ιωάννινα
(+30) 26510-07492 (Εναλλακτικά: -07493)
grammath@uoi.gr

© 2025 Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina

Login Form

  • Ξεχάσατε το όνομα χρήστη;
  • Ξεχάσατε τον κωδικό σας;
Go Top
  • Follow via Facebook