• Αρχική
  • Τμήμα
    • Ταυτότητα Τμήματος - Αποφοίτων
    • Βίντεο Παρουσίασης Τμήματος
    • Φυλλάδιο Παρουσίασης Τμήματος
    • Διοίκηση
    • Τομείς
      • Mαθηματικής Aνάλυσης
      • Άλγεβρας και Γεωμετρίας
      • Πιθανοτήτων, Στατιστικής και Eπιχειρησιακής Έρευνας
      • Eφαρμοσμένων και Υπολογιστικών Mαθηματικών
    • Γραμματεία
      • Αρμοδιότητες
      • Διαδικασία Αιτημάτων Φοιτητών
      • Ενεργοποίηση Ιδρυματικού Λογαριασμού Φοιτητή
    • Εργαστήρια - Σπουδαστήρια
    • Αναγνωστήριο
  • Σπουδές
    • Οδηγοί Σπουδών
    • Οδηγός για Πρωτοετείς Φοιτητές
    • Προπτυχιακές Σπουδές
      • Μαθήματα και Διδάσκοντες
      • Σύμβουλοι Σπουδών
      • Παρουσίαση Προγράμματος Προπτυχιακών Σπουδών
      • Κανονισμοί
      • Εκπόνηση Πτυχιακής Εργασίας
      • Σεμιναριακά Μαθήματα
      • Κατατακτήριες Εξετάσεις
    • Μεταπτυχιακές Σπουδές
      • Μαθήματα και Διδάσκοντες
      • Πρόσληψη Μεταπτυχιακών Φοιτητών
      • Παρουσίαση Προγράμματος Μεταπτυχιακών Σπουδών
      • Κανονισμοί
      • Έντυπα και Πρότυπα
      • Κατάλογος Κατόχων Μεταπτυχιακού Διπλώματος
      • Κατάλογος Μεταπτυχιακών Διατριβών
    • Διδακτορικές Σπουδές
      • Πρόσληψη Υποψηφίων Διδακτόρων
      • Παρουσίαση Προγράμματος Διδακτορικών Σπουδών
      • Κανονισμοί
      • Κατάλογος Κατόχων Διδακτορικού Διπλώματος
      • Κατάλογος Διδακτορικών Διατριβών
    • Μεταδιδακτορική Έρευνα
      • Κανονισμός
      • Σχετικά με τη Μεταδιδακτορική Έρευνα
    • Πρακτική Άσκηση
    • Erasmus+
      • Πρόγραμμα Erasmus+
      • Διμερείς Συμφωνίες
      • Κανονισμοί
    • Υποστήριξη ΦμεΑ
    • Κανονισμοί Τμήματος
    • Ακαδημαϊκό Ημερολόγιο
    • Συνήγορος του Φοιτητή
  • Προσωπικό
    • Αναζήτηση
    • Μέλη Δ.Ε.Π.
    • Εργαστηριακό Προσωπικό
    • Διοικητικό Προσωπικό
    • Συμβασιούχοι Διδάσκοντες
    • Μεταδιδάκτορες
    • Υποψήφιοι Διδάκτορες Ph.D.
    • Μεταπτυχιακοί Φοιτητές Msc.
    • Ομότιμοι Καθηγητές
    • Επίτιμοι Διδάκτορες
    • Επισκέπτες Τμήματος
      • Κανονισμός
    • Προκηρύξεις Θέσεων
    • Χρήσιμα Έντυπα για το Προσωπικό
    • Θεανώ
    • Διατελέσαντες ως μέλη ΔΕΠ
  • Διασφάλιση Ποιότητας
    • Πρόγραμμα Προπτυχιακών Σπουδών
      • Πιστοποίηση
      • Πολιτική Ποιότητας
      • Στοχοθεσία
    • Πρόγραμμα Μεταπτυχιακών Σπουδών
      • Πολιτική Ποιότητας
      • Στοχοθεσία
    • Στρατηγικός Σχεδιασμός
    • Αξιολογήσεις
  • Σύνδεσμοι
    • DocuGate
    • Εύδοξος
    • ClassWeb
    • eCourse
    • Ακαδημαϊκή Ταυτότητα
    • Στεγαστικό Επίδομα
    • Έντυπα για Φοιτητές
    • ΣΚΕΠΙ
    • ΔΑΣΤΑ
    • Κεντρική Βιβλιοθήκη
    • ΜΟΔΙΠ
    • Τεχνικές Αναφορές (1999 - 2016)
  • Επικοινωνία
  • Απόφοιτοι

×

Search
uoi bird
Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina
  • Ελληνικά
  • English
Τρίτη, 27 Ιανουάριος 2026
Ωρολόγιο Πρόγραμμα Προπτυχιακού
Οδηγός Προπτυχιακών Σπουδών
Πρόγραμμα Εξετάσεων Μεταπτυχιακού
Οδηγός Πρωτοετών
Νόμος 5224/2025
Υπουργική Απόφαση 118901
Εγκύκλιος 118904
Διαπιστωτική Πράξη Διαγραφέντων
Πίνακας Διαγραφέντων Φοιτητών

  • Αρχική /
  • Greek /
  • UndergraduateCourseGR

logo 60years

Το Τμήμα Μαθηματικών είναι το δεύτερο σε σειρά αρχαιότητας Τμήμα του Πανεπιστημίου Ιωαννίνων. Ιδρύθηκε το 1966 στην πόλη των Ιωαννίνων, συνιστά από κοινού με τα Τμήματα Φυσικής και Χημείας τη Σχολή Θετικών Επιστημών και στεγάζεται στο κτίριο του Τμήματος Μαθηματικών, στη βορειοδυτική πλευρά της Πανεπιστημιούπολης.

Στην 50-ετή και πλέον εξελικτική του πορεία, το Τμήμα Μαθηματικών, πέρασε από διάφορα στάδια ανάπτυξης. Σήμερα, διαδραματίζει ένα σημαντικό ρόλο στο επιστημονικό γίγνεσθαι, όχι μόνο της περιοχής των Ιωαννίνων και της Ηπείρου ευρύτερα, αλλά της χώρας, γενικότερα. Το ερευνητικό του έργο και η ερευνητική του παρουσία αναγνωρίζεται διεθνώς, ενώ το πρόγραμμα σπουδών του, προπτυχιακό και μεταπτυχιακό, χαρακτηρίζεται από πλουραλισμό και καλύπτει όλους τους σύγχρονους κλάδους της μαθηματικής επιστήμης. Θα λέγαμε, λοιπόν, ότι το Τμήμα Μαθηματικών συμβάλλει τα μέγιστα, στην επιστημονική κατάρτιση των φοιτητών του και τους δίνει τη δυνατότητα να οικοδομήσουν το προφίλ του μαθηματικού που επιθυμούν, συνεισφέροντας, με τον τρόπο αυτό και στο βαθμό που του αναλογεί, στην επαγγελματική αποκατάσταση των αποφοίτων του.

Ευχόμαστε στους επισκέπτες μας καλή πλοήγηση και είμαστε στη διάθεσή τους για οποιαδήποτε πληροφορία σχετική με τη λειτουργία του Τμήματος.

ΜΑE541 - Δομές Δεδομένων

Περιγραφή

Στοιχεία Πολυπλοκότητας Αλγορίθμων. Αφηρημένοι Τύποι Δεδομένων. Πίνακες. Αλυσίδες. Λίστες (Απλά Συνδεδεμένες Λίστες, Διπλά Συνδεδεμένες Λίστες, Κυκλικές Λίστες, Γενικευμένες Λίστες), Στοίβες, Ουρές, Διπλο-ουρές, Ουρές Προτεραιότητας. Δένδρα (Γενικά Δένδρα, Δυαδικά Δένδρα, Δυαδικά Δένδρα Αναζήτησης, Οπισθοσυνδεδεμένα Δένδρα, Σωροί, AVL-Δένδρα, 2-3 Δένδρα, 2-3-4 Δένδρα, Β-Δένδρα). Κατευθυνόμενοι Γράφοι, Μη Κατευθυνόμενοι Γράφοι. Χειρισμός Συνόλων. Κατακερματισμός. Δυναμική Διαχείριση Μνήμης. Αναζήτηση. Ταξινόμηση.

Εργαστήριο.

Διδάσκοντες

  • Ν. Γλυνός

Περίγραμμα Μαθήματος

ΜΑE545 - Αριθμητική Γραμμική Άλγεβρα

Περιγραφή

Στοιχεία από τη θεωρία Πινάκων. Ευστάθεια Γραμμικών Συστημάτων. Άμεσες Μέθοδοι: Μέθοδος Απαλοιφής Gauss, LU Ανάλυση, LDU Ανάλυση (Crout). Ανάλυση Cholesky. Επαναληπτικές μέθοδοι: Μέθοδος Jacobi, μέθοδος Gauss-Seidel, μέθοδος SOR. Αριθμητική εύρεση Ιδιοτιμών και Ιδιοδιανυσμάτων: Μέθοδος Δυνάμεων, μέθοδος QR, μέθοδος LR.

Διδάσκοντες

  • Δ. Νούτσος

Περίγραμμα Μαθήματος

ΜΑE613 - Ολοκληρωτικές Εξισώσεις

Περιγραφή

Ταξινόμηση των Ολοκληρωτικών Εξισώσεων. Μερικές σημαντικές ταυτότητες. Αναγωγή προβλημάτων σε ολοκληρωτικές εξισώσεις.

Ολοκληρωτικοί Μετασχηματισμοί: Μετασχηματισμοί Laplace, Μετασχηματισμοί Laplace μερικών ειδικών συναρτήσεων, Εφαρμογές των Μετασχηματισμών Laplace στις Διαφορικές Εξισώσεις, Άλλοι Ολοκληρωτικοί Μετασχηματισμοί (Fourier, Hilbert, Mellin).

Ολοκληρωτικές Εξισώσεις Volterra: Ολοκληρωτικές Εξισώσεις Volterra β’ είδους, Σειρές Neumann, Μέθοδος των διαδοχικών προσεγγίσεων, Μέθοδος του Μετασχηματισμού Laplace, Πυρήνας διαφοράς, Ολοκληρωτικές Εξισώσεις Volterra α’ είδους.

Ολοκληρωτικές Εξισώσεις Fredholm: Εξισώσεις με διαχωρίσιμο πυρήνα, Fredholm Alternative. Ολοκληρωτικές εξισώσεις Fredholm με συμμετρικό πυρήνα, Κλασσική Θεωρία Fredholm.

Συναρτήσεις Green: Μη ομογενείς συνήθεις διαφορικές εξισώσεις, Κατασκευή των Συναρτήσεων Green.

Ύπαρξη των λύσεων-Βασικά Θεωρήματα σταθερού σημείου: Χώροι Banach, Χώροι Hilbert, Θεώρημα σταθερού σημείου του Banach, Εφαρμογές του Θεωρήματος σταθερού σημείου του Banach σε προβλήματα αρχικών τιμών για ολοκληρωτικές εξισώσεις, Φραγμένοι γραμμικοί τελεστές, Συμπαγείς και πλήρως συνεχείς τελεστές, Εφαρμογές σε προβλήματα αρχικών τιμών για ολοκληρωτικές εξισώσεις.

Διδάσκοντες

  • Συμβασιούχος Διδάσκων

Περίγραμμα Μαθήματος

ΜΑΥ611 - Μιγαδικές Συναρτήσεις Ι

Περιγραφή

Ορισμός του συνόλου των Μιγαδικών Αριθμών. Το Μιγαδικό Επίπεδο. Ρίζες μιγαδικών αριθμών. Ευθύγραμμα Τμήματα. Τοπολογία. Σύγκλιση. Η Σφαίρα του Riemann. Αναλυτικές Ιδιότητες Συναρτήσεων. Δυναμοσειρές. Στοιχειώδεις Μιγαδικές Συναρτήσεις (Ρητές, η Εκθετική Συνάρτηση, οι Τριγωνομετρικές, οι Υπερβολικές, ο Λογάριθμος, η Δύναμη, η Γενική Εκθετική Συνάρτηση). Καμπύλες. Σύμμορφες Απεικονίσεις. Ομοτοπικές Καμπύλες. Επικαμπύλια Ολοκληρώματα. Τοπικές Ιδιότητες Συναρτήσεων. Βασικά Θεωρήματα. Σειρές taylor. Διατήρηση Ολοκληρωμάτων. Δείκτης Στροφής. Γενικά Συμπεράσματα. Ανώμαλα Σημεία (πόλοι, κλπ.). Σειρές Laurent. Ολοκληρωτικά Υπόλοιπα. Θεώρημα του Cauchy για τα Ολοκληρωτικά Υπόλοιπα (Ολοκλήρωμα Τριγωνομετρικών Συναρτήσεων, Ολοκλήρωμα Γενικευμένο στο Άπειρο, Ειδικές Περιπτώσεις).

Διδάσκοντες

  • Ι. Γιαννούλης

Περίγραμμα Μαθήματος

ΜΑΥ648 - Κλασική Μηχανική

Περιγραφή

Επανάληψη-σύνδεση μέσω φυσικών εννοιών με τα βασικά εργαλεία: εμβαδά, μάζα και πυκνότητα, ροπές αδράνειας και κέντρο μάζας. Στοιχεία διαφορικών εξισώσεων και οι βασικές έννοιες της μηχανικής (ο χώρος, ο χρόνος και το υλικό σημείο). Αξιώματα του Νεύτωνα και η έννοια της δύναμης. Βασικές έννοιες και θεωρήματα της ανάλυσης, Γραμμική κίνηση, Ενέργεια και στροφορμή, Κεντρικές δυνάμεις, Συστήματα πολλών σωμάτων, Μηχανική κατά Langrange, Χαμιλτονιανή Μηχανική.

Διδάσκοντες

  • Μ. Ξένος

Περίγραμμα Μαθήματος

ΜΑE614 - Διαφορικές Εξισώσεις Ι

Περιγραφή

Συνήθεις διαφορικές εξισώσεις: Ύπαρξη, μονοσήμαντο και έκταση λύσεων προβλημάτων αρχικών τιμών.

Θεωρία γραμμικών διαφορικών συστημάτων: Oμογενή γραμμικά διαφορικά συστήματα. Mη ομογενή γραμμικά διαφορικά συστήματα. Oμογενή γραμμικά διαφορικά συστήματα με σταθερούς συντελεστές. Eυστάθεια των γραμμικών διαφορικών συστημάτων. Γραμμικές διαφορικές εξισώσεις αυθαίρετης τάξης. Eφαρμογές των συνήθων διαφορικών εξισώσεων.

Διδάσκοντες

  • Ι. Πουρναράς

Περίγραμμα Μαθήματος

ΜΑE623 - Γεωμετρία Μετασχηματισμών

Περιγραφή

Διερεύνηση της δευτεροβάθμιας εξίσωσης στο επίπεδο και στο χώρο. Επίπεδες αλγεβρικές Καμπύλες. Γεωμετρικοί Μετασχηματισμοί του επιπέδου και του χώρου. Ισομετρίες. Εφαρμογές.

Διδάσκοντες

  • Συμβασιούχος Διδάσκων

Περίγραμμα Μαθήματος

ΜΑE624 - Στοιχεία Ολικής Διαφορικής Γεωμετρίας

Περιγραφή

Καμπύλες: Κυρτές καμπύλες. Θεώρημα των τεσσάρων κορυφών. Ισοπεριμετρικό πρόβλημα.

Επιφάνειες: Εξισώσεις Codazzi. Θεώρημα Liebmann. Γεωδαιτική καμπυλότητα. Γεωδαιτικές γραμμές. Επιφάνειες σταθερής καμπυλότητας. Θεώρημα Gauss-Bonnet.

Διδάσκοντες

  • Θ. Βλάχος

Περίγραμμα Μαθήματος

Σελίδα 4 από 8

  • Έναρξη
  • Προηγούμενο
  • 1
  • 2
  • 3
  • 4
  • ...
  • 6
  • 7
  • 8
  • Επόμενο
  • Τέλος

Ανακοινώσεις

  • 26Ιαν Ψήφισμα Γ.Σ. για τη Διδακτική Επάρκεια των Αποφοίτων 26-01-2026
  • 23Ιαν Erasmus+: Προκηρύξεις για Πρακτική Άσκηση και Σπουδές 23-01-2026
  • 23Ιαν "Υπολογιστική Στατιστική (ΜΑΕ836)" - Εκδήλωση Ενδιαφέροντος 23-01-2026
  • 23Ιαν "Στατιστική Ανάλυση Δεδομένων (ΜΑΕ832)" - Εκδήλωση Ενδιαφέροντος 23-01-2026
  • 09Ιαν Πρόσκληση Εκδήλωσης Ενδιαφέροντος για «Απόκτηση Ακαδημαϊκής Διδακτικής Εμπειρίας στο Πανεπιστήμιο Ιωαννίνων στο Ακαδημαϊκό Έτος 2025-2026» (Εαρινο Εξαμηνο) 09-01-2026
  • 09Ιαν Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήματος Μαθηματικών Πανεπιστημίου Θεσσαλίας 09-01-2026
  • 24Δεκ Παράταση δηλώσεων και διανομής διδακτικών συγγραμμάτων χειμερινού εξαμήνου 24-12-2025
  • 17Δεκ Οριστικός κατάλογος διαγραφέντων φοιτητών/τριών που συμπλήρωσαν την ανώτατη διάρκεια φοίτησης με το πέρας της επαναληπτικής εξεταστικής Σεπτεμβρίου 2025 17-12-2025
  • 06Δεκ Αξιολογήσεις Προπτυχιακών και Μεταπτυχιακών Μαθημάτων 06-12-2025
  • 06Δεκ Online Εργαστήριο: "Branding Yourself: CV & Cover Letter" 06-12-2025

Σεμινάρια - Διαλέξεις - Ημερίδες

18 Φεβρουαρίου 2026, 15:00, Aίθουσα 201α

Εβδομαδιαίο Σεμινάριο

Filippo Santambrogio: Gradient Flows in Euclidean Space, Metric Spaces, and Wasserstein Spaces open in new custom

15 Ιανουαρίου 2026, 10:00, Aίθουσα 201Α

Παρουσίαση Μεταπτυχιακής Διατριβής

Ευάγγελος Γκότσης: Tilting Theory, Quasi-abelian Categories, and Stability Conditions open in new custom

12 Ιανουαρίου 2026, 10:30, Aίθουσα 201Α

Παρουσίαση Μεταπτυχιακής Διατριβής

Σωκράτης Αναστασίου: «Το πρόβλημα του εφημεριδοπώλη ελαχιστοποιώντας την υπό όρους αξία σε κίνδυνο open in new custom

Τμήμα Μαθηματικών
Σχολή Θετικών Επιστημών
Πανεπιστήμιο Ιωαννίνων

Για τεχνικά ζητήματα που αφορούν
τον ιστότοπο του Τμήματος Μαθηματικών,
παρακαλούμε επικοινωνήστε με την
Επιτροπή Διαδικτύου του Τμήματος
(kmavridi@uoi.gr ή ksimos@uoi.gr)  ..

Πανεπιστημιούπολη, TK 45110, Ιωάννινα
(+30) 26510-07492 (Εναλλακτικά: -07493)
grammath@uoi.gr

© 2026 Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina

Login Form

  • Ξεχάσατε το όνομα χρήστη;
  • Ξεχάσατε τον κωδικό σας;
Go Top
  • Follow via Facebook