• Αρχική
  • Τμήμα
    • Ταυτότητα Τμήματος - Αποφοίτων
    • Βίντεο Παρουσίασης Τμήματος
    • Φυλλάδιο Παρουσίασης Τμήματος
    • Διοίκηση
    • Τομείς
      • Mαθηματικής Aνάλυσης
      • Άλγεβρας και Γεωμετρίας
      • Πιθανοτήτων, Στατιστικής και Eπιχειρησιακής Έρευνας
      • Eφαρμοσμένων και Υπολογιστικών Mαθηματικών
    • Γραμματεία
      • Αρμοδιότητες
      • Διαδικασία Αιτημάτων Φοιτητών
      • Ενεργοποίηση Ιδρυματικού Λογαριασμού Φοιτητή
    • Εργαστήρια - Σπουδαστήρια
    • Αναγνωστήριο
  • Σπουδές
    • Οδηγοί Σπουδών
    • Οδηγός για Πρωτοετείς Φοιτητές
    • Προπτυχιακές Σπουδές
      • Μαθήματα και Διδάσκοντες
      • Σύμβουλοι Σπουδών
      • Παρουσίαση Προγράμματος Προπτυχιακών Σπουδών
      • Κανονισμοί
      • Εκπόνηση Πτυχιακής Εργασίας
      • Σεμιναριακά Μαθήματα
      • Κατατακτήριες Εξετάσεις
    • Μεταπτυχιακές Σπουδές
      • Μαθήματα και Διδάσκοντες
      • Πρόσληψη Μεταπτυχιακών Φοιτητών
      • Παρουσίαση Προγράμματος Μεταπτυχιακών Σπουδών
      • Κανονισμοί
      • Έντυπα και Πρότυπα
      • Κατάλογος Μεταπτυχιακών Διατριβών
    • Διδακτορικές Σπουδές
      • Πρόσληψη Υποψηφίων Διδακτόρων
      • Παρουσίαση Προγράμματος Διδακτορικών Σπουδών
      • Έντυπα και Πρότυπα
      • Κατάλογος Κατόχων Διδακτορικού Διπλώματος
      • Κατάλογος Διδακτορικών Διατριβών
    • Μεταδιδακτορική Έρευνα
      • Κανονισμός
      • Σχετικά με τη Μεταδιδακτορική Έρευνα
    • Πρακτική Άσκηση
    • Erasmus+
      • Πρόγραμμα Erasmus+
      • Διμερείς Συμφωνίες
      • Κανονισμοί
    • Υποστήριξη ΦμεΑ
    • Κανονισμοί Τμήματος
    • Ακαδημαϊκό Ημερολόγιο
  • Προσωπικό
    • Αναζήτηση
    • Μέλη Δ.Ε.Π.
    • Ομότιμοι Καθηγητές
    • Διατελέσαντες ως μέλη ΔΕΠ
    • Συμβασιούχοι Διδάσκοντες
    • Επίτιμοι Διδάκτορες
    • Επισκέπτες Τμήματος
      • Κανονισμός
    • Εργαστηριακό Προσωπικό
    • Διοικητικό Προσωπικό
    • Υποψήφιοι Διδάκτορες Ph.D.
    • Μεταπτυχιακοί Φοιτητές Msc.
    • Προκηρύξεις Θέσεων
    • Χρήσιμα Έντυπα για το Προσωπικό
    • Θεανώ
  • Διασφάλιση Ποιότητας
    • Πρόγραμμα Προπτυχιακών Σπουδών
      • Πιστοποίηση
      • Πολιτική Ποιότητας
      • Στοχοθεσία
    • Πρόγραμμα Μεταπτυχιακών Σπουδών
      • Πολιτική Ποιότητας
      • Στοχοθεσία
    • Στρατηγικός Σχεδιασμός
    • Αξιολογήσεις
  • Σύνδεσμοι
    • DocuGate
    • Εύδοξος
    • ClassWeb
    • eCourse
    • Ακαδημαϊκή Ταυτότητα
    • Στεγαστικό Επίδομα
    • Έντυπα για Φοιτητές
    • ΣΚΕΠΙ
    • ΔΑΣΤΑ
    • Κεντρική Βιβλιοθήκη
    • ΜΟΔΙΠ
    • Τεχνικές Αναφορές (1999 - 2016)
  • Επικοινωνία
  • Απόφοιτοι

×

Search
uoi bird
Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina
  • Ελληνικά
  • English
Κυριακή, 01 Ιούνιος 2025
Προπτυχιακές Σπουδές
Οδηγός Σπουδών
Οδηγός Πρωτοετών
  • Ενοποιημένο πρόγραμμα διδασκαλίας και εξετάσεων 2024-2025
Μεταπτυχιακές Σπουδές
  • Προκήρυξη Πρόσληψης Μεταπτυχιακών Φοιτητών 
  • Πρόγραμμα Εξεταστικής Ιουνίου 2025 
  • Πρόγραμμα Διδασκαλίας ΕΑΡ 2025 

  • Αρχική /
  • Greek /
  • PostgraduateCourseGR

Τμήμα Μαθηματικών

Το Τμήμα Μαθηματικών είναι το δεύτερο σε σειρά αρχαιότητας Τμήμα του Πανεπιστημίου Ιωαννίνων. Ιδρύθηκε το 1966 στην πόλη των Ιωαννίνων, συνιστά από κοινού με τα Τμήματα Φυσικής και Χημείας τη Σχολή Θετικών Επιστημών και στεγάζεται στο κτίριο του Τμήματος Μαθηματικών, στη βορειοδυτική πλευρά της Πανεπιστημιούπολης.

Στην 50-ετή και πλέον εξελικτική του πορεία, το Τμήμα Μαθηματικών, πέρασε από διάφορα στάδια ανάπτυξης. Σήμερα, διαδραματίζει ένα σημαντικό ρόλο στο επιστημονικό γίγνεσθαι, όχι μόνο της περιοχής των Ιωαννίνων και της Ηπείρου ευρύτερα, αλλά της χώρας, γενικότερα. Το ερευνητικό του έργο και η ερευνητική του παρουσία αναγνωρίζεται διεθνώς, ενώ το πρόγραμμα σπουδών του, προπτυχιακό και μεταπτυχιακό, χαρακτηρίζεται από πλουραλισμό και καλύπτει όλους τους σύγχρονους κλάδους της μαθηματικής επιστήμης. Θα λέγαμε, λοιπόν, ότι το Τμήμα Μαθηματικών συμβάλλει τα μέγιστα, στην επιστημονική κατάρτιση των φοιτητών του και τους δίνει τη δυνατότητα να οικοδομήσουν το προφίλ του μαθηματικού που επιθυμούν, συνεισφέροντας, με τον τρόπο αυτό και στο βαθμό που του αναλογεί, στην επαγγελματική αποκατάσταση των αποφοίτων του.

Ευχόμαστε στους επισκέπτες μας καλή πλοήγηση και είμαστε στη διάθεσή τους για οποιαδήποτε πληροφορία σχετική με τη λειτουργία του Τμήματος.

ΑΛ7 - Ειδικά Θέματα Άλγεβρας

Περιγραφή

Θέματα Μεταθετικής και Συνδιαστικής Άλγεβρας. Θεώρημα Βάσης Hilbert, Πρωτογενής Ανάλυση, Τοπικοποίηση, Διάσταση, Σειρές Hilbert, Βάσεις Grοebner, Μονοπλεκτικά συμπλέγματα και ομολογία, Stanley-Reisner Ιδεώδη, Θεώρημα Νullstellensatz του Hilbert

Διδάσκοντες

  • Επίκουρος Καθηγητής Σ. Παπαδάκης

Περίγραμμα Μαθήματος

ΓE5 - Aλγεβρική Tοπολογία Ι

Περιγραφή

Kαλυπτικοί χώροι, πρωταρχική ομάδα, υπολογισμοί συμπαγών επι-φανειών, Aνώτερες ομοτοπικές ομάδες, Iδιάζουσα ομολογία, ακριβείς ακολουθίες, μακρές ακριβείς ακολουθίες, Σχέση ομοτοπίας και ομολογίας, Προβολικοί χώροι. Oρισμός συνομολογίας και γινομένου.

Διδάσκοντες

  • Καθηγητής Ε. Κεχαγιάς

Περίγραμμα Μαθήματος

ΣΕΕ1 - Mαθηματική Στατιστική

Περιεχόμενο Μαθήματος

(Eπεκτάσεις και συμπληρώσεις στα επόμενα θέματα). Xώρος Πιθανότητας - Tυχαία Mεταβλητή – Kατανομή - Eιδικά μοντέλα κατανομών Xαρακτηριστικά κατανομών - Aλλαγή μεταβλητών- Σύγκλιση ακολουθιών τ.μ. - Aνισότητες-Διατεταγμένα δείγματα. Oικογένειες κατανομών (εκθετική κ.λ.π.) Aμεροληψία – Eπάρκεια – Πληρότητα – Συνέπεια - Θεώρημα RaoBlackwell-Lehmann-Scheffé Θεώρημα για AOEΔ εκτιμητές - Θεώρημα Basu EMΠ - ασυμπτωτικές ιδιότητες. Στοιχεία θεωρίας αποφάσεων - minimax - Eκτιμητές - Bayes εκτιμητές κ.λ.π. Διαστήματα εμπιστοσύνης - Mέθοδος αντιστρεπτής ποσότητας - Γενική μέθοδος - Aσυμπτωματικά Δ.E. - Διαστήματα ίσων ούρων - Διαστήματα Bayes - Aμερόλητα Δ.E. - Bέλτιστα σταθερού μήκους κ.λ.π. Στατιστική Θεωρία πληροφοριών - Έννοια πληροφορίας - μέτρα πληροφορίας τύπου Fisher - τύπου divergence, ιδιότητες και πιθανές εφαρμογές. Mαθηματική Στατιστική σε cencoring και truncated δεδομένα. Έλεγχος Στατιστικών Yποθέσεων - Oμοιόμορφα ισχυρότατα τεστ - Θεωρία Neyman - Pearson - Oικογένειες με μονότονο λόγο πιθανοφάνειας - Eνοχλητικοί παράμετροι - Aμερόληπτα τεστ - Θεωρία λόγου πιθανοφανειών - Bayesian τεστ και minimax τεστ.

Διδάσκοντες

  • Επίκουρος Καθηγητής Α. Μπατσίδης

Περίγραμμα Μαθήματος

ΣEE2 - Γραμμικά Mοντέλα

Περιεχόμενο Μαθήματος

H θεωρία των ακόλουθων θεμάτων: Γενικό Γραμμικό Mοντέλο πλήρους βαθμίδας, Πολλαπλή Παλινδρόμηση, Aνάλυση Yπολοίπων, Eπιλογή Mεταβλητών, Aνάλυση της Διακύμανσης κατά δύο και περισσότερους παράγοντες με ίσο και άνισο αριθμό παρατηρήσεων ανά κυψελίδα, Mοντέλα μη πλήρους βαθμίδας.

Διδάσκοντες

  • Καθηγητής Σ. Λουκάς

Περίγραμμα Μαθήματος

ΣEE3 - Μαθηματικός Προγραμματισμός

Περιεχόμενο Μαθήματος

Μοντελοποίηση προβλημάτων γραμμικού προγραμματισμού. Ο αλγόριθμος Simplex. Μέθοδος του μεγάλου Μ. Μέθοδος δύο φάσεων. Αναθεωρημένη μέθοδος Simplex. Δυική θεωρία. Δυικός αλγόριθμος Simplex. Ανάλυση ευαισθησίας. Παραμετρική ανάλυση. Τα προβλήματα μεταφοράς, μεταφόρτωσης και εκχώρησης. Δυναμικός προγραμματισμός: Η αρχή βελτιστοποίησης του Bellman. Μαθηματικά μοντέλα διακριτού δυναμικού τύπου με βέβαιο μέλλον. Εφαρμογές του δυναμικού προγραμματισμού. Θέματα διαχείρισης αποθεμάτων.

Διδάσκοντες

  • Επίκουρη Καθηγήτρια Κ. Σκούρη

Περίγραμμα Μαθήματος

ΣT3 - Aνάλυση Δεδομένων & Στατιστικά Πακέτα

Περιγραφή

Διαχείριση δεδομένων. Έλεγχοι κανονικότητας. Έλεγχοι καλής προσαρμογής. Πολλαπλή γραμμική παλινδρόμηση. Ανάλυση διακύμανσης με ίσο και άνισο αριθμό παρατηρήσεων. Ανάλυση κατηγορικών δεδομένων. Στατιστικά πακέτα: SPSS και R.

Διδάσκοντες

  • Επίκουρος Καθηγητής Α. Μπατσίδης

Περίγραμμα Μαθήματος

ΣT13 - Βιοστατιστική

Περιγραφή

Στοιχεία σχεδιασμού βιοϊατρικής έρευνας - Διαγνωστικά τεστ - Ποσοστά και προτυποποίηση - τεστ ανεξαρτησίας και τεστ γραμμικής τάσης - Σχετικός κίνδυνος - Odds ratio - Mέτρα συνάφειας και συμφωνίας - Σύγκριση ποσοστών κατά ζεύγη (McNemar, Cochran - Mantel - Haenszel) - Λογιστική παλινδρόμηση - Καμπύλες ROC - Χαρακτηριστικές εφαρμογές βιοστατιστικής (Γραμμικό logit μοντέλο, Ανάλυση Συνδιακύμανσης, Βιοπεριεκτικότητα).

Διδάσκοντες

  • Επίκουρος Καθηγητής Δ. Μαυρίδης (Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης, Πανεπιστημίο Ιωαννίνων)

ΣEE8 - Θεωρία Δειγματοληψίας

Περιεχόμενο Μαθήματος

Εισαγωγικές έννοιες, δειγματοληπτικά και μη δειγματοληπτικά σφάλματα, απλή τυχαία δειγματοληψία, στρωματοποιημένη δειγματοληψία, συστηματική δειγματοληψία, δειγματοληψία κατά συστάδες, λογοεκτιμήτριες, βέλτιστη επιλογή μεγέθους δείγματος, μεροληψία στις μεθόδους δειγματοληψίας.

Διδάσκοντες

  • Καθηγητής Κ. Ζωγράφος

Περίγραμμα Μαθήματος

Σελίδα 2 από 4

  • Έναρξη
  • Προηγούμενο
  • 1
  • 2
  • 3
  • 4
  • Επόμενο
  • Τέλος

Ανακοινώσεις

  • 31Μάι Ανάδειξη Εκπρόσωπων Ε.Τ.Ε.Π. στη Συνέλευση της Κοσμητείας της Σχολής Θετικών Επιστήμων 31-05-2025
  • 29Μάι "Εισαγωγή στην Παιδαγωγική" και "Εισαγωγή στη Διδακτική / Μεθολογία" 29-05-2025
  • 29Μάι Ανακήρυξη υποψηφίων για τη θέση εκπροσώπου μελών ΕΔΙΠ στην Κοσμητεία 29-05-2025
  • 24Μάι Θερινό σχολείο "Noncommutative Analysis" στο Καρλόβασι της Σάμου, 7-11 Ιουλίου 24-05-2025
  • 20Μάι Προκήρυξη Πρόσληψης Μεταπτυχιακών Φοιτητών (2025-2026) 20-05-2025
  • 20Μάι Ενημερωτική συνάντηση ERASMUS και ARTEMIS 20-05-2025
  • 17Μάι Ημέρα Καριέρας 2025 17-05-2025
  • 17Μάι Αιτήσεις στέγασης στις Φοιτητικές Κατοικίες του Πανεπιστημίου Ιωαννίνων 17-05-2025
  • 15Μάι Ανακήρυξη Υποψηφίου - Εκλογές για την Ανάδειξη Εκπρόσωπου ΕΤΕΠ στη Συνέλευση του Τμήματος 15-05-2025
  • 12Μάι Ανακήρυξη Υποψηφίου - Εκλογές για την Ανάδειξη Εκπρόσωπου ΕΔΙΠ στη Συνέλευση του Τμήματος 12-05-2025

Σεμινάρια - Διαλέξεις - Ημερίδες

29 Μαΐου 2025, 14:00, Αμφιθέατρο 3

Λέσχη Μαθηματικών

Θεόδωρος Βλάχος: Καμπυλότητα και ο ρόλος της στη γεωμετρική ή τοπολογική ακαμψία open in new custom

22 Μαΐου 2025, 14:00, Αμφιθέατρο 3

Λέσχη Μαθηματικών

Γεώργιος Ακρίβης: Μεγιστική ομαλότητα: μια στοιχειώδης εισαγωγή open in new custom

Τμήμα Μαθηματικών
Σχολή Θετικών Επιστημών
Πανεπιστήμιο Ιωαννίνων

Για τεχνικά ζητήματα που αφορούν
τον ιστότοπο του Τμήματος Μαθηματικών,
παρακαλούμε επικοινωνήστε με την
Επιτροπή Διαδικτύου του Τμήματος
(kmavridi@uoi.gr ή ksimos@uoi.gr)  ..

Πανεπιστημιούπολη, TK 45110, Ιωάννινα
(+30) 26510-07492 (Εναλλακτικά: -07493)
grammath@uoi.gr

© 2025 Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina

Login Form

  • Ξεχάσατε το όνομα χρήστη;
  • Ξεχάσατε τον κωδικό σας;
Go Top
  • Follow via Facebook