Τμήμα Μαθηματικών
Το Τμήμα Μαθηματικών είναι το δεύτερο σε σειρά αρχαιότητας Τμήμα του Πανεπιστημίου Ιωαννίνων. Ιδρύθηκε το 1966 στην πόλη των Ιωαννίνων, συνιστά από κοινού με τα Τμήματα Φυσικής και Χημείας τη Σχολή Θετικών Επιστημών και στεγάζεται στο κτίριο του Τμήματος Μαθηματικών, στη βορειοδυτική πλευρά της Πανεπιστημιούπολης.
Στην 50-ετή και πλέον εξελικτική του πορεία, το Τμήμα Μαθηματικών, πέρασε από διάφορα στάδια ανάπτυξης. Σήμερα, διαδραματίζει ένα σημαντικό ρόλο στο επιστημονικό γίγνεσθαι, όχι μόνο της περιοχής των Ιωαννίνων και της Ηπείρου ευρύτερα, αλλά της χώρας, γενικότερα. Το ερευνητικό του έργο και η ερευνητική του παρουσία αναγνωρίζεται διεθνώς, ενώ το πρόγραμμα σπουδών του, προπτυχιακό και μεταπτυχιακό, χαρακτηρίζεται από πλουραλισμό και καλύπτει όλους τους σύγχρονους κλάδους της μαθηματικής επιστήμης. Θα λέγαμε, λοιπόν, ότι το Τμήμα Μαθηματικών συμβάλλει τα μέγιστα, στην επιστημονική κατάρτιση των φοιτητών του και τους δίνει τη δυνατότητα να οικοδομήσουν το προφίλ του μαθηματικού που επιθυμούν, συνεισφέροντας, με τον τρόπο αυτό και στο βαθμό που του αναλογεί, στην επαγγελματική αποκατάσταση των αποφοίτων του.
Ευχόμαστε στους επισκέπτες μας καλή πλοήγηση και είμαστε στη διάθεσή τους για οποιαδήποτε πληροφορία σχετική με τη λειτουργία του Τμήματος.
ΣT11 - Πολυδιάστατη Aνάλυση
Περιγραφή
Πολυδιάστατη κανονική κατανομή. Mη κεντρική χ2 και F κατανομή. Θεωρία τετραγωνικών μορφών: Xαρακτηριστικά, Aνεξαρτησία, Kατανομές. Σφαιρικές και Eλλειπτικές κατανομές. Άλλες πολυδιάστατες κατανομές. Eκτιμητές Mέγιστης Πιθανοφάνειας (E.M.Π) των παραμέτρων της πολυδιάστατης κανονικής κατανομής. Kατανομή των E.M.Π. - Kατανομή Wishart. Θεωρητικές ιδιότητες των E.M.Π.
Έλεγχος υποθέσεων των παραμέτρων της πολυδιάστατης κανονικής κατανομής: Mέθοδος πηλίκου μέγιστης πιθανοφάνειας - Mέθοδος Ένωσης / Tομής. T2-στατιστικό και η κατανομή του - Kατανομή Hotelling. Eφαρμογές του T2 στατιστικού: σε ελέγχους υποθέσεων για το μέσο διάνυσμα - συγκρίσεις δύο ή περισσοτέρων μέσων διανυσμάτων - συναληθεύουσες περιοχές εμπιστοσύνης - έλεγχοι συμμετρίας. Έλεγχοι ανεξαρτησίας ομάδων συνιστωσών κανονικού τυχαίου διανύσματος.
Kύριες συνιστώσες. Διαχωριστική ή Tαξινομική ανάλυση. Cluster Ανάλυση.
Διδάσκοντες
- Καθηγητής Κ. Ζωγράφος
ΣT16 - Μη Γραμμικός Προγραμματισμός
Περιγραφή
Βελτιστοποίηση με και χωρίς περιορισμούς: Πολλαπλασιαστές Lagrange, συνθήκες KarushKuhn-Tucker. Μέθοδοι βελτιστοποίησης για προβλήματα χωρίς περιορισμούς: Line Search, Trust Region, Conjugate Gradient, Newton, Quasi-Newton methods. Μέθοδοι βελτιστοποίησης για προβλήματα με περιορισμούς: Quadratic Programming, Penalty Barrier και Augmented Lagrangian Methods.
Διδάσκοντες
- Επίκουρη Καθηγήτρια Κ. Σκούρη
AA3A - Aριθμητική Γραμμική Άλγεβρα I
Περιεχόμενο Μαθήματος
Θεωρία Perron-Frobenius για μη Αρνητικούς Πίνακες: Μη Αναγώγιμοι (Irreducible) πίνακες, Κυκλικοί (cyclic) και Πρωταρχικοί (primitive) πίνακες, Αναγώγιμοι (reducible) πίνακες. Επεκτάσεις της Θεωρίας Perron-Frobenius, M-πίνακες, Εφαρμογές της Θεωρίας Perron-Frobenius. Μέθοδοι Ελαχιστοποίησης για την επίλυση γραμμικών συστημάτων: Μέθοδος Συζυγών Κλίσεων, Θεωρία Σύγκλισης, Ανάλυση Σφαλμάτων, Τεχνικές Προρρύθμισης, Προρρυθμισμένες μέθοδοι Συζυγών Κλίσεων, Εφαρμογές.
Διδάσκοντες
- Καθηγητής Δ. Νούτσος
AA6A - Aριθμητική Επίλυση Διαφορικών Eξισώσεων με Μερικές Παραγώγους
Περιεχόμενο Μαθήματος
Αριθμητική επίλυση Παραβολικών και Ελλειπτικών Μερικών Διαφορικών Εξισώσεων με μεθόδους πεπερασμένων διαφορών και πεπερασμένων στοιχείων.
Διδάσκοντες
- Επίκουρος Καθηγητής Θ. Χωρίκης
EM1A - Μέθοδοι Εφαρμοσμένων Μαθηματικών Ι
Περιεχόμενο Μαθήματος
Διαστατική ανάλυση και κανονικοποίηση. Θεωρία Διαταραχών για αλγεβρικές εξισώσεις, ολοκληρώματα και διαφορικές εξισώσεις. Φυσικά μοντέλα που περιγράφονται με Μερικές Διαφορικές Εξισώσεις. Κυματικά φαινόμενα σε συνεχή μέσα. Το μάθημα περιλαμβάνει και πρακτική εφαρμογή σε εργαστήριο Η/Υ (Εργαστήριο Μηχανικής).
Διδάσκοντες
- Επίκουρος Καθηγητής Θ. Χωρίκης
ΠΛ3Α - Προηγμένα Θέματα Αλγορίθμων
Περιεχόμενο Μαθήματος
- Πολυπλοκότητα
- Ασυμπτωματική πολυπλοκότητα
- Ανάλυση αλγορίθμων, εύρεση πολυπλοκότητας
- Μέθοδοι σχεδίασης αλγορίθμων (διαίρει και βασίλευε, μέθοδος της απληστίας, δυναμικός προγραμματισμός, οπισθοδρόμηση, αναδρομή, διεξοδική διερεύνηση και διελεύσεις με διακλάδωση και περιορισμό, κ.ά.)
- Κατηγορίες προβλημάτων και αντίστοιχοι αλγόριθμοι (ταξινόμηση, αναζήτηση, επιλογή, αλγόριθμοι σε γράφους, δίκτυα ταξινόμησης, αλγόριθμοι για πίνακες, αριθμητική ακεραίων και πολυωνύμων, αλγόριθμοι χειρισμού αλυσίδων, υπολογιστική γεωμετρία, κ.ά.)
- Κλάσεις πολυπλοκότητας P, NP
- Ειδικά θέματα
Διδάσκοντες
- Επίκουρος Καθηγητής Ν. Γλυνός
ΠΛ2Α - Μαθηματική Θεωρία των Υπολογισμών
Περιεχόμενο Μαθήματος
- Ιδιότητες των μαθηματικών μοντέλων των υπολογισμών
- Κατάταξη προβλημάτων σε επιλύσιμα και μη
- Κατάταξη επιλύσιμων προβλημάτων σε εύκολα
Διδάσκοντες
- Λέκτορας Σ. Μπαλτζής
ΠΛ2 - Σχεδίαση & Ανάλυση Αλγορίθμων
Περιγραφή
Βιβλία Αναφοράς: T. Cormen, C. Leiserson, R. Rivest, (1990). Algorithms. The MIT Press, McGraw-Hill. S. Baase, (1988). Computer Algorithms, Introduction to Design and Analysis, Second Edition, Addison-Wesley. E. Horowitz, S. Sahni, (1978). Fundamentals of Computer Algorithms, Computer Science Press. A. Aho, J. Hopcroft, J. Ullman, (1974). The Design and Analysis of Computer Algorithms, Addison-Wesley.
Πολυπλοκότητα, Ασυμπτωματική πολυπλοκότητα, Ανάλυση αλγορίθμων. Μέθοδοι σχεδίασης αλγορίθμων (διαίρει και βασίλευε, μέθοδος της απληστίας, δυναμικός προγραμματισμός, οπισθοδρόμηση, αναδρομή, διερευνήσεις και διελεύσεις, κ.ά.). Κατηγορίες προβλημάτων και αντίστοιχοι αλγόριθμοι όπως ταξινόμηση, αναζήτηση, επιλογή, αλγόριθμοι σε γράφους, δίκτυα ταξινόμησης, αλγόριθμοι για πίνακες, αριθμητική ακεραίων και πολυωνύμων, αλγόριθμοι χειρισμού αλυσίδων, υπολογιστική γεωμετρία, κ.ά. Κλάσεις πολυπλοκότητας P, NP.
Διδάσκοντες
- Επίκουρος Καθηγητής Ν. Γλυνός
Ανακοινώσεις
- 06Νοε Κατ' εξαίρεση υπέρβαση της ανώτατης διάρκειας φοίτησης 06-11-2025
- 03Νοε Εκδήλωση Μονάδας Υποστήριξης Φοιτητών: "Μεταπτυχιακές Σπουδές στο Εξωτερικό και Υποτροφίες ΙΚΥ" 03-11-2025
- 03Νοε Κατατακτήριες Εξετάσεις 2025 - 2026 03-11-2025
- 29Οκτ Δηλώσεις μαθημάτων εμβόλιμης εξεταστικής Ιανουαρίου 2026 29-10-2025
- 27Οκτ Ανακοίνωση Διεύθυνσης Εκπαίδευσης Πανεπιστημίου Ιωαννίνων 27-10-2025
- 27Οκτ Προκήρυξη εκλογών για την ανάδειξη εκπροσώπου των φοιτητών και του αναπληρωτή του στο Πειθαρχικό Συμβούλιο Φοιτητών του Πανεπιστημίου 27-10-2025
- 23Οκτ 40ο Πανελλήνιο Συνέδριο Μαθηματικής Παιδείας 23-10-2025
- 23Οκτ Συμπληρωματική Ανακοίνωση Διεύθυνσης Εκπαίδευσης Πανεπιστημίου Ιωαννίνων 23-10-2025
- 19Οκτ Αίτηση Λήψης Πτυχίου (Δεκέμβριος 2025) 19-10-2025
- 13Οκτ Το Πανεπιστήμιο Ιωαννίνων υποδέχεται τους πρωτοετείς φοιτητές και φοιτήτριες 13-10-2025
Σεμινάρια - Διαλέξεις - Ημερίδες
29 Οκτωβρίου 2025, 19:00, Διαδικτυακά και Aίθουσα 201α
Σεμινάριο DANOMA Lab
Athanasios Kottas: Bayesian nonparametric density regression: methods and applications ![]()
22 Οκτωβρίου 2025, 16:30, Aίθουσα 201α
Σεμινάριο DANOMA Lab
Georg Zimmermann: Some challenges regarding data analysis in research on rare diseases ![]()
22 Οκτωβρίου 2025, 15:00, Aίθουσα 201α
Εβδομαδιαίο Σεμινάριο
Νικόλαος Τσακανίκας: An Overview of Singular Symplectic and Enriques Varieties ![]()

