• Αρχική
  • Τμήμα
    • Ταυτότητα Τμήματος - Αποφοίτων
    • Βίντεο Παρουσίασης Τμήματος
    • Φυλλάδιο Παρουσίασης Τμήματος
    • Διοίκηση
    • Τομείς
      • Mαθηματικής Aνάλυσης
      • Άλγεβρας και Γεωμετρίας
      • Πιθανοτήτων, Στατιστικής και Eπιχειρησιακής Έρευνας
      • Eφαρμοσμένων και Υπολογιστικών Mαθηματικών
    • Γραμματεία
      • Αρμοδιότητες
      • Διαδικασία Αιτημάτων Φοιτητών
      • Ενεργοποίηση Ιδρυματικού Λογαριασμού Φοιτητή
    • Εργαστήρια - Σπουδαστήρια
    • Αναγνωστήριο
  • Σπουδές
    • Οδηγοί Σπουδών
    • Οδηγός για Πρωτοετείς Φοιτητές
    • Προπτυχιακές Σπουδές
      • Μαθήματα και Διδάσκοντες
      • Σύμβουλοι Σπουδών
      • Παρουσίαση Προγράμματος Προπτυχιακών Σπουδών
      • Κανονισμοί
      • Εκπόνηση Πτυχιακής Εργασίας
      • Σεμιναριακά Μαθήματα
      • Κατατακτήριες Εξετάσεις
    • Μεταπτυχιακές Σπουδές
      • Μαθήματα και Διδάσκοντες
      • Πρόσληψη Μεταπτυχιακών Φοιτητών
      • Παρουσίαση Προγράμματος Μεταπτυχιακών Σπουδών
      • Κανονισμοί
      • Έντυπα και Πρότυπα
      • Κατάλογος Κατόχων Μεταπτυχιακού Διπλώματος
      • Κατάλογος Μεταπτυχιακών Διατριβών
    • Διδακτορικές Σπουδές
      • Πρόσληψη Υποψηφίων Διδακτόρων
      • Παρουσίαση Προγράμματος Διδακτορικών Σπουδών
      • Κανονισμοί
      • Κατάλογος Κατόχων Διδακτορικού Διπλώματος
      • Κατάλογος Διδακτορικών Διατριβών
    • Μεταδιδακτορική Έρευνα
      • Κανονισμός
      • Σχετικά με τη Μεταδιδακτορική Έρευνα
    • Πρακτική Άσκηση
    • Erasmus+
      • Πρόγραμμα Erasmus+
      • Διμερείς Συμφωνίες
      • Κανονισμοί
    • Υποστήριξη ΦμεΑ
    • Κανονισμοί Τμήματος
    • Ακαδημαϊκό Ημερολόγιο
    • Συνήγορος του Φοιτητή
  • Προσωπικό
    • Αναζήτηση
    • Μέλη Δ.Ε.Π.
    • Εργαστηριακό Προσωπικό
    • Διοικητικό Προσωπικό
    • Συμβασιούχοι Διδάσκοντες
    • Μεταδιδάκτορες
    • Υποψήφιοι Διδάκτορες Ph.D.
    • Μεταπτυχιακοί Φοιτητές Msc.
    • Ομότιμοι Καθηγητές
    • Επίτιμοι Διδάκτορες
    • Επισκέπτες Τμήματος
      • Κανονισμός
    • Προκηρύξεις Θέσεων
    • Χρήσιμα Έντυπα για το Προσωπικό
    • Θεανώ
    • Διατελέσαντες ως μέλη ΔΕΠ
  • Διασφάλιση Ποιότητας
    • Πρόγραμμα Προπτυχιακών Σπουδών
      • Πιστοποίηση
      • Πολιτική Ποιότητας
      • Στοχοθεσία
    • Πρόγραμμα Μεταπτυχιακών Σπουδών
      • Πολιτική Ποιότητας
      • Στοχοθεσία
    • Στρατηγικός Σχεδιασμός
    • Αξιολογήσεις
  • Σύνδεσμοι
    • DocuGate
    • Εύδοξος
    • ClassWeb
    • eCourse
    • Ακαδημαϊκή Ταυτότητα
    • Στεγαστικό Επίδομα
    • Έντυπα για Φοιτητές
    • ΣΚΕΠΙ
    • ΔΑΣΤΑ
    • Κεντρική Βιβλιοθήκη
    • ΜΟΔΙΠ
    • Τεχνικές Αναφορές (1999 - 2016)
  • Επικοινωνία
  • Απόφοιτοι

×

Search
uoi bird
Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina
  • Ελληνικά
  • English
Τετάρτη, 24 Δεκέμβριος 2025
  • Αρχική /
  • Νέα - Ανακοινώσεις /
  • Greek /
  • UndergraduateCourseGR

ΜΑE623 - Γεωμετρία Μετασχηματισμών

Περιγραφή

Διερεύνηση της δευτεροβάθμιας εξίσωσης στο επίπεδο και στο χώρο. Επίπεδες αλγεβρικές Καμπύλες. Γεωμετρικοί Μετασχηματισμοί του επιπέδου και του χώρου. Ισομετρίες. Εφαρμογές.

Διδάσκοντες

  • Συμβασιούχος Διδάσκων

Περίγραμμα Μαθήματος

ΜΑE624 - Στοιχεία Ολικής Διαφορικής Γεωμετρίας

Περιγραφή

Καμπύλες: Κυρτές καμπύλες. Θεώρημα των τεσσάρων κορυφών. Ισοπεριμετρικό πρόβλημα.

Επιφάνειες: Εξισώσεις Codazzi. Θεώρημα Liebmann. Γεωδαιτική καμπυλότητα. Γεωδαιτικές γραμμές. Επιφάνειες σταθερής καμπυλότητας. Θεώρημα Gauss-Bonnet.

Διδάσκοντες

  • Θ. Βλάχος

Περίγραμμα Μαθήματος

ΜΑΕ633 - Στατιστική Συμπερασματολογία

Περιγραφή

Eκτιμητική: Αμερόληπτοι, επαρκείς και συνεπείς εκτιμητές. Αμερόληπτοι εκτιμητές ελάχιστης διασποράς. Ανισότητα Cramer - Rao. Θεωρία Lehmann - Scheffe. Εκτιμητές μέγιστης πιθανοφάνειας και ιδιότητες αυτών. Μέθοδοι εκτιμήσεως (μεγίστης πιθανοφάνειας και μέθοδοι των ροπών). Εκτίμηση παραμέτρων σε διάστημα. Διαστήματα και περιοχές εμπιστοσύνης.

Έλεγχοι υποθέσεων: Λήμμα Neyman - Pearson. Έλεγχοι απλών υποθέσεων, έλεγχος συνθέτων υποθέσεων. Ισχυρότατα τεστ. Τεστ πηλίκων πιθανοφανείας.

Διδάσκοντες

  • Κ. Ζωγράφος

Περίγραμμα Μαθήματος

ΜΑΕ631 - Γραμμικός Προγραμματισμός

Περιγραφή

Μοντελοποίηση προβλημάτων γραμμικού προγραμματισμού. Γραφική επίλυση προβλημάτων γραμμικού προγραμματισμού στο χώρο των δύο διαστάσεων. Ο αλγόριθμος Simplex. Μέθοδος του μεγάλου Μ. Μέθοδος δύο φάσεων. Δυική θεωρία. Ανάλυση ευαισθησίας. Πρόβλημα μεταφοράς. Στο μάθημα θα χρησιμοποιηθεί το λογισμικό LINDO.

Διδάσκοντες

  • Κ. Σκούρη

Περίγραμμα Μαθήματος

ΜΑΕ634 - Θεωρία Συστημάτων Εξυπηρέτησης

Περιγραφή

Το Σύστημα Μ/Μ/1: Ανάλυση καταστάσεων, Χρόνος αναμονής, Χρόνος συνεχούς απασχόλησης, Διαδικασία αναχωρήσεων. Άλλα Μαρκοβιανά Συστήματα: Το Μ/Μ/m/k σύστημα, Το Μ/Μ/∞/∞ σύστημα, Συστήματα Erlang, Συστήματα με ομαδικές αφίξεις ή αναχωρήσεις. Το M/G/1 Σύστημα: Καταστάσεις συστήματος, Χρόνος αναμονής, Χρόνος συνεχούς απασχόλησης.

Διδάσκοντες

  • Κ. Σκούρη

Περίγραμμα Μαθήματος

  1. ΜΑΕ641 - Σχεδίαση και Ανάλυση Αλγορίθμων
  2. ΜΑΕ644 - Εισαγωγή στα Συμβολικά Μαθηματικά
  3. ΜΑΕ645 - Θεωρία Προσέγγισης
  4. ΜΑΕ646 - Τεχνικές Μαθηματικής Μοντελοποίησης

Σελίδα 4 από 7

  • Έναρξη
  • Προηγούμενο
  • 1
  • 2
  • 3
  • 4
  • ...
  • 6
  • 7
  • Επόμενο
  • Τέλος

Τμήμα Μαθηματικών
Σχολή Θετικών Επιστημών
Πανεπιστήμιο Ιωαννίνων

Για τεχνικά ζητήματα που αφορούν
τον ιστότοπο του Τμήματος Μαθηματικών,
παρακαλούμε επικοινωνήστε με την
Επιτροπή Διαδικτύου του Τμήματος
(kmavridi@uoi.gr ή ksimos@uoi.gr)  ..

Πανεπιστημιούπολη, TK 45110, Ιωάννινα
(+30) 26510-07492 (Εναλλακτικά: -07493)
grammath@uoi.gr

Rss Module

feed-image Ροή Ειδήσεων

© 2025 Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina

Login Form

  • Ξεχάσατε το όνομα χρήστη;
  • Ξεχάσατε τον κωδικό σας;
Go Top
  • Follow via Facebook