ΜΑΕ646 - Τεχνικές Μαθηματικής Μοντελοποίησης
Περιγραφή
Εισαγωγή και συμβολισμός θεωρίας διαταραχών. Κανονικές και ιδιόμορφες διαταραχές. Ασυμπτωτικά αναπτύγματα ολοκληρωμάτων. Ασυμπτωτικές λύσεις γραμμικών και μη γραμμικών διαφορικών εξισώσεων. Μετασχηματισμοί Laplace και Fourier.
Διδάσκοντες
- Συμβασιούχος Διδάσκων
ΜΑE732 - Θέματα Επιχειρησιακών Ερευνών
Περιγραφή
Ακέραιος γραμμικός προγραμματισμός (Μοντελοποίηση προβλημάτων ακέραιου και μεικτού ακέραιου προγραμματισμού, Αλγόριθμοι ακέραιου προγραμματισμού). Δυναμικός προγραμματισμός (Αρχή Bellman, Προβλήματα πεπερασμένου και άπειρου ορίζοντα, Εφαρμογές σε προβλήματα διαδρομών, αντικατάστασης εξοπλισμού, αποθεμάτων). Ανάλυση αποφάσεων (Γενικά χαρακτηριστικά των προβλημάτων αποφάσεων, αποφάσεις σε συνθήκες αβεβαιότητας, αποφάσεις σε συνθήκες κινδύνου, δένδρα αποφάσεων, ανάλυση κινδύνου).
Διδάσκοντες
ΜΑΕ727 - Ευκλείδεια και μη Ευκλείδειες Γεωμετρίες
Περιγραφή
Ευκλείδια Γεωμετρία. Αξιώματα, το αξίωμα της παραλληλίας. Συμβιβαστότητα των αξιωμάτων. Απόλυτη Γεωμετρία. Ανεξαρτησία του αξιώματος της Παραλληλίας. Υπερβολική Γεωμετρία. Το μοντέλο Poincarẻ. Στοιχεία από τη Σφαιρική Γεωμετρία.
Διδάσκοντες
- Συμβασιούχος Διδάσκων
ΜΑE731 - Θεωρία Αποφάσεων-Bayes
Περιγραφή
Γενικά Στοιχεία Θεωρίας Αποφάσεων (συνάρτηση αποφάσεως, απώλειας, κινδύνου). Παραδεκτός Εκτιμητής. Ελαχιστομέγιστος Εκτιμητής. Στοιχεία από τη Θεωρεία Bayes. Εκτιμητής Bayes. Διάστημα Bayes. Στατιστικά τεστ minimax & Bayes.
Διδάσκοντες
- Συμβασιούχος Διδάσκων
ΜΑΕ725 - Θεωρία Δακτυλίων
Περιγραφή
Δακτύλιοι. Ομομορφισμοί. Ιδεώση. Δακτύλιοι Πηλικά. Μόδιοι Νέοι Δακτύλιοι από παλαιούς. Άλγεβρες. Ομαδοάλγεβρες. Μόδιοι Ομαδοαλγεβρών. Ενδομορφισμοί Μοδίων. Ο Διμεταθέτης. Απλοί πιστοί Μόδιοι και Πρωταρχικοί Δακτύλιοι. Δακτύλιοι Artin. Απλές Άλγεβρες Πεπερασμάνης Διάστασης Υπεράνω Αλγεβρικών Κλειστών Σωμάτων. Μόδιοι Artin και Δακτύλιοι. Μόδιοι Noether και Δακτύλιοι. Ριζικό Δακτυλίου.