ΜΑE616 - Θεωρία Μέτρου
Περιγραφή
Άλγεβρες, σ- άλγεβρες. (Θετικά) μέτρα, εξωτερικά μέτρα, Θεώρημα Καραθεοδωρή (για την κατασκευή μέτρων από εξωτερικά μέτρα). Μέτρο Lebesgue. Ολοκλήρωμα Lebesgue, Θεώρημα μονότονης σύγκλισης του Lebesgue, Θεώρημα κυριαρχημένης σύγκλισης του Lebesgue, σύγκριση του ολοκληρώματος Riemann με το ολοκλήρωμα Lebesgue. Μέτρα γινόμενα, Θεώρημα Fubini. Προσημασμένα μέτρα, Θεωρήματα ανάλυσης Hahn, Jordan και Lebesgue, Θεώρημα Radon-Nikodym. Χώροι Lp.
Διδάσκοντες
ΜΑE816 - Εξισώσεις Διαφορών - Διακριτά Μοντέλα
Περιγραφή
Εισαγωγικά. Γραμμικές εξισώσεις διαφορών. Συστήματα γραμμικών εξισώσεων διαφορών. Μη γραμμικές εξισώσεις διαφορών. Θεωρία ευστάθειας για εξισώσεις διαφορών. Ασυμπτωτική θεωρία για εξισώσεις διαφορών. Εξισώσεις διαφορών με συνεχή μεταβλητή. Διακριτά μοντέλα από τη δυναμική των πληθυσμών. Διακριτά μοντέλα από διάφορες Επιστήμες
Διδάσκοντες
ΜΑE823 - Αλγεβρικές Δομές ΙΙ
Περιεχόμενο Μαθήματος
- Δακτύλιοι.
- Περιοχές και Σώματα Ομομορφισμοί και Ιδεώδη.
- Δακτύλιοι Πηλίκων.
- Πολυωνυμικοί Δακτύλιοι υπεράνω Σωμάτων.
- Πρώτα και Μεγιστοτικά Ιδεώδη.
- Ανάγωγα Πολυώνυμα.
- Οι Κλασικοί Τύποι Επίλυσης Πολυωνυμικών Εξισώσεων.
- Σώματα Διάσπασης.
- Η Ομάδα Galois.
- Οι ρίζες της Μονάδας.
- Επιλυσιμότητα με Ριζικά.
- Ανεξαρτησία Χαρακτήρων.
- Επεκτάσεις Galois.
- Το Θεμελιώδες Θεώρημα Galois.
- Διακρίνουσες.
- Πολυώνυμα Βαθμού ≤4 και Ομάδες Galois.
- Γεωμετρικές Κατασκευές με Κανόνα και Διαβήτη.
Διδάσκοντες
ΜΑE822 - Ειδικά Θέματα Γεωμετρίας
Περιγραφή
Διαφορικές μορφές στον Rn . Επικαμπύλια ολοκληρώματα. Διαφορίσιμα πολυπτύγματα. Ολοκλήρωση επι πολυπτυγμάτων. Ολοκλήρωση διαφορικών μορφών. Το θεώρημα του Stokes. Το λήμμα Poincarè. Γεωμετρία επιφανειών. Εξισώσεις δομής του Rn.
Διδάσκοντες
- Συμβασιούχος Διδάσκων
ΜΑE832 - Στατιστική Ανάλυση Δεδομένων
Περιγραφή
Στο μάθημα αυτό γίνεται εφαρμογή, με τη βοήθεια του υπολογιστή και τη χρήση διάφορων στατιστικών προγραμμάτων (JMP, SPSS), της στατιστικής θεωρίας που αναπτύχθηκε στα μαθήματα «Στατιστική Συμπερασματολογία» και «Παλινδρόμηση και Ανάλυση Διακύμανσης». Πιο συγκεκριμένα γίνεται εφαρμογή στον έλεγχο υποθέσεων, στην απλή και πολλαπλή γραμμική παλινδρόμηση, καθώς και στην ανάλυση διακύμανσης κατά ένα παράγοντα. Το μάθημα πραγματοποιείται σε αίθουσα με υπολογιστές.