• Αρχική
  • Τμήμα
    • Ταυτότητα Τμήματος - Αποφοίτων
    • Βίντεο Παρουσίασης Τμήματος
    • Φυλλάδιο Παρουσίασης Τμήματος
    • Διοίκηση
    • Τομείς
      • Mαθηματικής Aνάλυσης
      • Άλγεβρας και Γεωμετρίας
      • Πιθανοτήτων, Στατιστικής και Eπιχειρησιακής Έρευνας
      • Eφαρμοσμένων και Υπολογιστικών Mαθηματικών
    • Γραμματεία
      • Αρμοδιότητες
      • Διαδικασία Αιτημάτων Φοιτητών
      • Ενεργοποίηση Ιδρυματικού Λογαριασμού Φοιτητή
    • Εργαστήρια - Σπουδαστήρια
    • Αναγνωστήριο
  • Σπουδές
    • Οδηγοί Σπουδών
    • Οδηγός για Πρωτοετείς Φοιτητές
    • Προπτυχιακές Σπουδές
      • Μαθήματα και Διδάσκοντες
      • Σύμβουλοι Σπουδών
      • Παρουσίαση Προγράμματος Προπτυχιακών Σπουδών
      • Κανονισμοί
      • Εκπόνηση Πτυχιακής Εργασίας
      • Σεμιναριακά Μαθήματα
      • Κατατακτήριες Εξετάσεις
    • Μεταπτυχιακές Σπουδές
      • Μαθήματα και Διδάσκοντες
      • Πρόσληψη Μεταπτυχιακών Φοιτητών
      • Παρουσίαση Προγράμματος Μεταπτυχιακών Σπουδών
      • Κανονισμοί
      • Έντυπα και Πρότυπα
      • Κατάλογος Μεταπτυχιακών Διατριβών
    • Διδακτορικές Σπουδές
      • Πρόσληψη Υποψηφίων Διδακτόρων
      • Παρουσίαση Προγράμματος Διδακτορικών Σπουδών
      • Έντυπα και Πρότυπα
      • Κατάλογος Κατόχων Διδακτορικού Διπλώματος
      • Κατάλογος Διδακτορικών Διατριβών
    • Μεταδιδακτορική Έρευνα
      • Κανονισμός
      • Σχετικά με τη Μεταδιδακτορική Έρευνα
    • Πρακτική Άσκηση
    • Erasmus+
      • Πρόγραμμα Erasmus+
      • Διμερείς Συμφωνίες
      • Κανονισμοί
    • Υποστήριξη ΦμεΑ
    • Κανονισμοί Τμήματος
    • Ακαδημαϊκό Ημερολόγιο
  • Προσωπικό
    • Αναζήτηση
    • Μέλη Δ.Ε.Π.
    • Ομότιμοι Καθηγητές
    • Διατελέσαντες ως μέλη ΔΕΠ
    • Συμβασιούχοι Διδάσκοντες
    • Επίτιμοι Διδάκτορες
    • Επισκέπτες Τμήματος
      • Κανονισμός
    • Εργαστηριακό Προσωπικό
    • Διοικητικό Προσωπικό
    • Υποψήφιοι Διδάκτορες Ph.D.
    • Μεταπτυχιακοί Φοιτητές Msc.
    • Προκηρύξεις Θέσεων
    • Χρήσιμα Έντυπα για το Προσωπικό
    • Θεανώ
  • Διασφάλιση Ποιότητας
    • Πρόγραμμα Προπτυχιακών Σπουδών
      • Πιστοποίηση
      • Πολιτική Ποιότητας
      • Στοχοθεσία
    • Πρόγραμμα Μεταπτυχιακών Σπουδών
      • Πολιτική Ποιότητας
      • Στοχοθεσία
    • Στρατηγικός Σχεδιασμός
    • Αξιολογήσεις
  • Σύνδεσμοι
    • DocuGate
    • Εύδοξος
    • ClassWeb
    • eCourse
    • Ακαδημαϊκή Ταυτότητα
    • Στεγαστικό Επίδομα
    • Έντυπα για Φοιτητές
    • ΣΚΕΠΙ
    • ΔΑΣΤΑ
    • Κεντρική Βιβλιοθήκη
    • ΜΟΔΙΠ
    • Τεχνικές Αναφορές (1999 - 2016)
  • Επικοινωνία
  • Απόφοιτοι

×

Search
uoi bird
Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina
  • Ελληνικά
  • English
Παρασκευή, 06 Ιούνιος 2025
  • Αρχική /
  • Νέα - Ανακοινώσεις /
  • Greek /
  • UndergraduateCourseGR

ΜΑE616 - Θεωρία Μέτρου

Περιγραφή

Άλγεβρες, σ- άλγεβρες. (Θετικά) μέτρα, εξωτερικά μέτρα, Θεώρημα Καραθεοδωρή (για την κατασκευή μέτρων από εξωτερικά μέτρα). Μέτρο Lebesgue. Ολοκλήρωμα Lebesgue, Θεώρημα μονότονης σύγκλισης του Lebesgue, Θεώρημα κυριαρχημένης σύγκλισης του Lebesgue, σύγκριση του ολοκληρώματος Riemann με το ολοκλήρωμα Lebesgue. Μέτρα γινόμενα, Θεώρημα Fubini. Προσημασμένα μέτρα, Θεωρήματα ανάλυσης Hahn, Jordan και Lebesgue, Θεώρημα Radon-Nikodym. Χώροι Lp.

Διδάσκοντες

  • Α. Τόλιας

Περίγραμμα Μαθήματος

ΜΑE816 - Εξισώσεις Διαφορών - Διακριτά Μοντέλα

Περιγραφή

Εισαγωγικά. Γραμμικές εξισώσεις διαφορών. Συστήματα γραμμικών εξισώσεων διαφορών. Μη γραμμικές εξισώσεις διαφορών. Θεωρία ευστάθειας για εξισώσεις διαφορών. Ασυμπτωτική θεωρία για εξισώσεις διαφορών. Εξισώσεις διαφορών με συνεχή μεταβλητή. Διακριτά μοντέλα από τη δυναμική των πληθυσμών. Διακριτά μοντέλα από διάφορες Επιστήμες

Διδάσκοντες

  • Κ. Μαυρίδης

Περίγραμμα Μαθήματος

ΜΑE823 - Αλγεβρικές Δομές ΙΙ

Περιεχόμενο Μαθήματος

  • Δακτύλιοι.
  • Περιοχές και Σώματα Ομομορφισμοί και Ιδεώδη.
  • Δακτύλιοι Πηλίκων.
  • Πολυωνυμικοί Δακτύλιοι υπεράνω Σωμάτων.
  • Πρώτα και Μεγιστοτικά Ιδεώδη.
  • Ανάγωγα Πολυώνυμα.
  • Οι Κλασικοί Τύποι Επίλυσης Πολυωνυμικών Εξισώσεων.
  • Σώματα Διάσπασης.
  • Η Ομάδα Galois.
  • Οι ρίζες της Μονάδας.
  • Επιλυσιμότητα με Ριζικά.
  • Ανεξαρτησία Χαρακτήρων.
  • Επεκτάσεις Galois.
  • Το Θεμελιώδες Θεώρημα Galois.
  • Διακρίνουσες.
  • Πολυώνυμα Βαθμού ≤4 και Ομάδες Galois.
  • Γεωμετρικές Κατασκευές με Κανόνα και Διαβήτη.

Διδάσκοντες

  • Σ. Παπαδάκης

Περίγραμμα Μαθήματος

ΜΑE822 - Ειδικά Θέματα Γεωμετρίας

Περιγραφή

Διαφορικές μορφές στον Rn . Επικαμπύλια ολοκληρώματα. Διαφορίσιμα πολυπτύγματα. Ολοκλήρωση επι πολυπτυγμάτων. Ολοκλήρωση διαφορικών μορφών. Το θεώρημα του Stokes. Το λήμμα Poincarè. Γεωμετρία επιφανειών. Εξισώσεις δομής του Rn.

Διδάσκοντες

  • Συμβασιούχος Διδάσκων

Περίγραμμα Μαθήματος

ΜΑE832 - Στατιστική Ανάλυση Δεδομένων

Περιγραφή

Στο μάθημα αυτό γίνεται εφαρμογή, με τη βοήθεια του υπολογιστή και τη χρήση διάφορων στατιστικών προγραμμάτων (JMP, SPSS), της στατιστικής θεωρίας που αναπτύχθηκε στα μαθήματα «Στατιστική Συμπερασματολογία» και «Παλινδρόμηση και Ανάλυση Διακύμανσης». Πιο συγκεκριμένα γίνεται εφαρμογή στον έλεγχο υποθέσεων, στην απλή και πολλαπλή γραμμική παλινδρόμηση, καθώς και στην ανάλυση διακύμανσης κατά ένα παράγοντα. Το μάθημα πραγματοποιείται σε αίθουσα με υπολογιστές.

Διδάσκοντες

  • Α. Μπατσίδης

Περίγραμμα Μαθήματος

  1. ΜΑE835 - Μη Παραμετρική Στατιστική - Κατηγορικά Δεδομένα
  2. ΜΑE845 - Εισαγωγή στην Επεξεργασία Φυσικής Γλώσσας
  3. ΜΑE847 - Ρευστομηχανική
  4. ΜΑΕ627 - Αλγεβρικές Καμπύλες

Σελίδα 3 από 7

  • Έναρξη
  • Προηγούμενο
  • 1
  • 2
  • 3
  • 4
  • ...
  • 6
  • 7
  • Επόμενο
  • Τέλος

Τμήμα Μαθηματικών
Σχολή Θετικών Επιστημών
Πανεπιστήμιο Ιωαννίνων

Για τεχνικά ζητήματα που αφορούν
τον ιστότοπο του Τμήματος Μαθηματικών,
παρακαλούμε επικοινωνήστε με την
Επιτροπή Διαδικτύου του Τμήματος
(kmavridi@uoi.gr ή ksimos@uoi.gr)  ..

Πανεπιστημιούπολη, TK 45110, Ιωάννινα
(+30) 26510-07492 (Εναλλακτικά: -07493)
grammath@uoi.gr

Rss Module

feed-image Ροή Ειδήσεων

© 2025 Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina

Login Form

  • Ξεχάσατε το όνομα χρήστη;
  • Ξεχάσατε τον κωδικό σας;
Go Top
  • Follow via Facebook