• Αρχική
  • Τμήμα
    • Ταυτότητα Τμήματος - Αποφοίτων
    • Βίντεο Παρουσίασης Τμήματος
    • Φυλλάδιο Παρουσίασης Τμήματος
    • Διοίκηση
    • Τομείς
      • Mαθηματικής Aνάλυσης
      • Άλγεβρας και Γεωμετρίας
      • Πιθανοτήτων, Στατιστικής και Eπιχειρησιακής Έρευνας
      • Eφαρμοσμένων και Υπολογιστικών Mαθηματικών
    • Γραμματεία
      • Αρμοδιότητες
      • Διαδικασία Αιτημάτων Φοιτητών
      • Ενεργοποίηση Ιδρυματικού Λογαριασμού Φοιτητή
    • Εργαστήρια - Σπουδαστήρια
    • Αναγνωστήριο
  • Σπουδές
    • Οδηγοί Σπουδών
    • Οδηγός για Πρωτοετείς Φοιτητές
    • Προπτυχιακές Σπουδές
      • Μαθήματα και Διδάσκοντες
      • Σύμβουλοι Σπουδών
      • Παρουσίαση Προγράμματος Προπτυχιακών Σπουδών
      • Κανονισμοί
      • Εκπόνηση Πτυχιακής Εργασίας
      • Σεμιναριακά Μαθήματα
      • Κατατακτήριες Εξετάσεις
    • Μεταπτυχιακές Σπουδές
      • Μαθήματα και Διδάσκοντες
      • Πρόσληψη Μεταπτυχιακών Φοιτητών
      • Παρουσίαση Προγράμματος Μεταπτυχιακών Σπουδών
      • Κανονισμοί
      • Έντυπα και Πρότυπα
      • Κατάλογος Κατόχων Μεταπτυχιακού Διπλώματος
      • Κατάλογος Μεταπτυχιακών Διατριβών
    • Διδακτορικές Σπουδές
      • Πρόσληψη Υποψηφίων Διδακτόρων
      • Παρουσίαση Προγράμματος Διδακτορικών Σπουδών
      • Έντυπα και Πρότυπα
      • Κατάλογος Κατόχων Διδακτορικού Διπλώματος
      • Κατάλογος Διδακτορικών Διατριβών
    • Μεταδιδακτορική Έρευνα
      • Κανονισμός
      • Σχετικά με τη Μεταδιδακτορική Έρευνα
    • Πρακτική Άσκηση
    • Erasmus+
      • Πρόγραμμα Erasmus+
      • Διμερείς Συμφωνίες
      • Κανονισμοί
    • Υποστήριξη ΦμεΑ
    • Κανονισμοί Τμήματος
    • Ακαδημαϊκό Ημερολόγιο
    • Συνήγορος του Φοιτητή
  • Προσωπικό
    • Αναζήτηση
    • Μέλη Δ.Ε.Π.
    • Ομότιμοι Καθηγητές
    • Διατελέσαντες ως μέλη ΔΕΠ
    • Συμβασιούχοι Διδάσκοντες
    • Επίτιμοι Διδάκτορες
    • Επισκέπτες Τμήματος
      • Κανονισμός
    • Εργαστηριακό Προσωπικό
    • Διοικητικό Προσωπικό
    • Υποψήφιοι Διδάκτορες Ph.D.
    • Μεταπτυχιακοί Φοιτητές Msc.
    • Προκηρύξεις Θέσεων
    • Χρήσιμα Έντυπα για το Προσωπικό
    • Θεανώ
  • Διασφάλιση Ποιότητας
    • Πρόγραμμα Προπτυχιακών Σπουδών
      • Πιστοποίηση
      • Πολιτική Ποιότητας
      • Στοχοθεσία
    • Πρόγραμμα Μεταπτυχιακών Σπουδών
      • Πολιτική Ποιότητας
      • Στοχοθεσία
    • Στρατηγικός Σχεδιασμός
    • Αξιολογήσεις
  • Σύνδεσμοι
    • DocuGate
    • Εύδοξος
    • ClassWeb
    • eCourse
    • Ακαδημαϊκή Ταυτότητα
    • Στεγαστικό Επίδομα
    • Έντυπα για Φοιτητές
    • ΣΚΕΠΙ
    • ΔΑΣΤΑ
    • Κεντρική Βιβλιοθήκη
    • ΜΟΔΙΠ
    • Τεχνικές Αναφορές (1999 - 2016)
  • Επικοινωνία
  • Απόφοιτοι

×

Search
uoi bird
Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina
  • Ελληνικά
  • English
  • Αρχική /
  • Τμήμα /
  • Τομείς /
  • Άλγεβρας και Γεωμετρίας /
  • Greek /
  • UndergraduateCourseGR

ΜΑΥ111 - Απειροστικός Λογισμός I

Περιγραφή

Πραγματικοί αριθμοί, αξιωματική θεμελίωση του συνόλου των πραγματικών αριθμών (με έμφαση στο supremum και το infimum), φυσικοί αριθμοί, επαγωγή, κλασσικές ανισότητες. Συναρτήσεις, γραφικές παραστάσεις συναρτήσεων, μονότονες συναρτήσεις, φραγμένες συναρτήσεις, περιοδικές συναρτήσεις. Αμφιμονοσήμαντες και επί συναρτήσεις, αντίστροφη συνάρτησης. Επισκόπηση τριγωνομετρίας, τριγωνομετρικές και αντίστροφες τριγωνομετρικές συναρτήσεις. Εκθετική και λογαριθμική συνάρτηση. Υπερβολικές και αντίστροφες υπερβολικές συναρτήσεις.

Ακολουθίες πραγματικών αριθμών, συγκλίνουσες ακολουθίες, μονότονες ακολουθίες, αναδρομικά οριζόμενες ακολουθίες, όρια μονοτόνων ακολουθιών, κιβωτισμός διαστημάτων. Η έννοια της υπακολουθίας, θεώρημα Bolzano Weierstass, ακολουθίες Cauchy. Σημεία συσσώρευσης ακολουθίας, ανώτερο και κατώτερο όριο ακολουθίας.

Συνέχεια συνάρτησης, σημεία συσσώρευσης και μεμονωμένα σημεία συνόλων. Όρια συναρτήσεων σε πραγματικό αριθμό, πλευρικά όρια, όρια στο +∞ και στο -∞. Συνέχεια βασικών συναρτήσεων, συνέχεια και τοπική συμπεριφορά. Θεώρημα Bolzano και θεώρημα ενδιαμέσων τιμών. Χαρακτηρισμός της συνέχειας με ακολουθίες. Ιδιότητες συνεχών συναρτήσεων σε κλειστό διάστημα, συνέχεια της αντίστροφης συνεχούς συνάρτησης.

Παράγωγος συναρτήσεως, ορισμός και γεωμετρική ερμηνεία, παραδείγματα και εφαρμογές στις φυσικές επιστήμες. Παράγωγοι βασικών συναρτήσεων, κανόνες παραγώγισης, παράγωγοι ανωτέρας τάξης. Θεώρημα Rolle, θεώρημα μέσης τιμής, θεώρημα Darboux. Σύνδεση της παραγώγου με τη μονοτονία συνάρτησης, ακρότατα συνάρτησης, κυρτές και κοίλες συναρτήσεις, σημεία καμπής. Θεώρημα παραγώγισης της αντίστροφης συνάρτησης. Γενικευμένο θεώρημα μέσης τιμής και κανόνας του De L' Hospital. Μελέτη συνάρτησης με χρήση παραγώγων.

Διδάσκων

  • Κ. Μαυρίδης

Περίγραμμα Μαθήματος

ΜΑΥ112 - Θεμελιώδεις Έννοιες Μαθηματικών

Περιγραφή

Λογικές προτάσεις. Προτασιακός Λογισμός. Ταυτολογίες. Bασική θεωρία συνόλων. Ένωση, τομή, διαφορά, συμμετρική διαφορά και ιδιότητες των πράξεων αυτών. Δυναμοσύνολο και συμπλήρωμα συνόλου. Καρτεσιανό γινόμενο συνόλων. Η έννοια της συλλογής συνόλων. Σχέσεις. Σύνθεση σχέσεων. Ιδιότητες των σχέσεων. Ισοδυναμίες. Κλάσεις ισοδυναμίας. Σχέσεις διάταξης. Φράγματα και φραγμένα σύνολα. Σύνολα καλά διατεταγμένα. Αρχή της υπερπεπερασμένης επαγωγής. Συναρτήσεις. Βασικές έννοιες. Αμφιμονοσήμαντη συνάρτηση. Αντίστροφη συνάρτηση. Εικόνα και αντίστροφη εικόνα ενός συνόλου μέσω μιας συνάρτησης. Συναρτήσεις και διατεταγμένα σύνολα. Οικογένειες. Το σύνολο των πραγματικών αριθμών. Αξιωματική θεμελίωση. Το σύνολο των φυσικών αριθμών. Το σύνολο των ακεραίων αριθμών. Ρίζες μη αρνητικών πραγματικών αριθμών. Το σώμα των ρητών αριθμών. Το σύνολο των αρρήτων αριθμών. Ισοδύναμα του αξιώματος της πληρότητας. b-δική παράσταση πραγματικού αριθμού. Ισοδύναμα σύνολα. Τα τμήματα των φυσικών αριθμών. Πεπερασμένα σύνολα. Απέραντα σύνολα. Το θεώρημα των Schröder-Bernstein. Αριθμήσιμα σύνολα. Το πολύ αριθμήσιμα σύνολα. Υπεραριθμήσιμα σύνολα. Το Θεώρημα του Cantor. Το αξίωμα της επιλογής. Ισοδύναμα του αξιώματος της επιλογής. Η αναγκαιότητα της αξιωματικής θεμελίωσης των συνόλων και μία πρώτη προσέγγιση σ’ αυτήν.

Διδάσκοντες

  • Α. Τόλιας
  • Ε. Νικολιδάκης

Περίγραμμα Μαθήματος

ΜΑΥ123 - Θεωρία Aριθμών

Περιγραφή

Διαιρετότητα, ισοδυναμίες mod m, Kινέζικο Θεώρημα υπολοίπων, Aριθμητικές συναρτήσεις και αντιστροφή του Mobius. Θεωρήματα Fermat, Euler και Wilson. Aρχικές ρίζες mod p. Θεωρία δεικτών και τετραγωνικά υπόλοιπα. Εφαρμογές στην κρυπτογραφία.

Διδάσκοντες

  • Α. Θωμά
  • Σ. Παπαδάκης

Περίγραμμα Μαθήματος

ΜΑΥ121 - Γραμμική Άλγεβρα I

Περιγραφή

Η Άλγεβρα των (m x n) πινάκων και εφαρμογές. Κλιμακωτοί και ισχυρά κλιμακωτοί πίνακες. Βαθμίδα πίνακα. Ορίζουσες. Αντίστοφος πίνακας. Γραμμικά συστήματα και εφαρμογές. Διανυσματικοί χώροι. Γραμμικές απεικονίσεις. Ο χώρος L(E,F) των γραμμικών απεικονίσεων. Υποχώροι. Βάσεις. Διάσταση. Βαθμίδα γραμμικής απεικόνισης. Θεμελιακή εξίσωση διάστασης και οι εφαρμογές της. Πίνακας γραμμικής απεικόνισης. Πίνακας αλλαγής βάσης. Ο ισομορφισμός L(E,F)?Mmxn(K). Ισοδύναμοι πίνακες. Όμοιοι πίνακες. Ορίζουσα ενός ενδομορφισμού. Άθροισμα και ευθύ άθροισμα υποχώρων.

Διδάσκοντες

  • Ε. Κεχαγιάς
  • Α. Μπεληγιάννης

Περίγραμμα Μαθήματος

ΜΑΥ211 - Aπειροστικός Λογισμός II

Περιγραφή

Σειρές, σύγκλιση σειρών και κριτήρια σύγκλισης. Κριτήριo Dirichlet, κριτήριο λόγου, κριτήριο ρίζας, κριτήριο ολοκληρώματος. Εναλλάσουσες σειρές και θεώρημα Leibnitz. Απόλυτη σύγκλιση σειράς, αναδιατάξεις σειρών. Δυναμοσειρές, ακτίνα σύγκλισης δυναμοσειρών.

Ομοιόμορφη συνέχεια συναρτήσεων, ορισμός και ιδιότητες. Χαρακτηρισμός ομοιόμορφης συνέχειας με ακολουθίες. Ομοιόμορφη συνέχεια συνεχών συναρτήσεων ορισμένων σε κλειστό διάστημα.

Ολοκλήρωμα Riemann, ορισμός για φραγμένες συναρτήσεις σε κλειστό διάστημα. Κριτήριο Riemann, ολοκληρωσιμότητα των συνεχών συναρτήσεων. Αόριστο ολοκλήρωμα και θεμελιώδες θεώρημα του Απειροστικού Λογισμού. Θεώρημα μέσης τιμής του ολοκληρωτικού λογισμού. Παραγοντική ολοκλήρωση και ολοκλήρωση με αντικατάσταση. Ολοκληρώματα βασικών συναρτήσεων, ολοκλήρωση ρητών συναρτήσεων. Εφαρμογές του ολοκληρώματος. Γενικευμένα ολοκληρώματα και κριτήρια σύγκλισης αυτών. Σχέση γενικευμένων ολοκληρωμάτων και σειρών.

Πολυώνυμα Taylor, θεώρημα Taylor, μορφές του υπολοίπου Taylor. Σειρές Taylor και αναπτύγματα σε σειρά Taylor βασικών συναρτήσεων.

Διδάσκοντες

  • Ε. Νικολιδάκης

Περίγραμμα Μαθήματος

  1. ΜΑΥ221 - Γραμμική Άλγεβρα II
  2. ΜΑΥ223 - Αναλυτική Γεωμετρία
  3. ΜΑΥ242 - Εισαγωγή στους Η/Υ
  4. ΜΑΥ311 - Απειροστικός Λογισμός III

Ανακοινώσεις

  • 02Οκτ Υποστηρικτική διδασκαλία Απειροστικού Λογισμού Ι 02-10-2025
  • 02Οκτ Έναρξη διδασκαλίας των Μαθημάτων ΜΑΕ544, ΜΑΕ742α, ΜΑΕ746 και ΜΑΕ585 (ΧΕΙΜ 2025) 02-10-2025
  • 01Οκτ Χειμερινό Σχολείο Γεωμετρικής Ανάλυσης και Μαθηματικής Γενικής Σχετικότητας 01-10-2025
  • 01Οκτ Ιστορία της Εκπαίδευσης Ι: Έναρξη μαθημάτων 01-10-2025
  • 01Οκτ Εισαγωγή στη Διδακτική / Μεθοδολογία: Έναρξη μαθημάτων 01-10-2025
  • 01Οκτ Έναρξη μεταπτυχιακών μαθημάτων 01-10-2025
  • 01Οκτ Υποδοχή πρωτοετών 2025 - 2026 01-10-2025
  • 29Σεπ ΜΑΥ343: Έναρξη Διδασκαλίας και Τμήματα Εργαστηρίων (ΧΕΙΜ 2025) 29-09-2025
  • 27Σεπ Αλλαγή στο ωρολόγιο πρόγραμμα διδασκαλίας του χειμερινού εξαμήνου 27-09-2025
  • 27Σεπ Μη παραμετρική στατιστική - Κατηγορικά δεδομένα (MAE735) 27-09-2025

Σεμινάρια - Διαλέξεις - Ημερίδες

25 Σεπτεμβρίου 2025, 13:00, Aίθουσα 201α

Εβδομαδιαίο Σεμινάριο

Λάμπρος Γαβαλάκης: A General De Bruijn Identity and Stability in Shannon’s Entropy Power Inequality open in new custom

11 Σεπτεμβρίου 2025, 14:00, Aίθουσα 201α

Εβδομαδιαίο Σεμινάριο

Σωκράτης Ζήκας: Gizatullin’s Problem and the Volume Preserving Sarkisov Program open in new custom

Τμήμα Μαθηματικών
Σχολή Θετικών Επιστημών
Πανεπιστήμιο Ιωαννίνων

Για τεχνικά ζητήματα που αφορούν
τον ιστότοπο του Τμήματος Μαθηματικών,
παρακαλούμε επικοινωνήστε με την
Επιτροπή Διαδικτύου του Τμήματος
(kmavridi@uoi.gr ή ksimos@uoi.gr)  ..

Πανεπιστημιούπολη, TK 45110, Ιωάννινα
(+30) 26510-07492 (Εναλλακτικά: -07493)
grammath@uoi.gr

© 2025 Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων - Department of Mathematics, University of Ioannina

Login Form

  • Ξεχάσατε το όνομα χρήστη;
  • Ξεχάσατε τον κωδικό σας;
Go Top
  • Follow via Facebook