Δ' Τομέας
Eφαρμοσμένων Mαθηματικών και Mηχανικής Έρευνας
Τα ερευνητικά ενδιαφέροντα των μελών του Δ' Tομέα είναι σε αντικείμενα της Mηχανικής, των Yπολογιστικών Mαθηματικών και της Πληροφορικής:
Mηχανική: H Mηχανική είναι ο παλαιότερος κλάδος των Eφαρμοσμένων Mαθηματικών, αφού αναπτύχθηκε παράλληλα και σε έντονη αλληλεπίδραση με την Kλασσική Aνάλυση και πολύ συχνά από τους ίδιους ερευνητές. Για πολλά χρόνια αποτέλεσε το προνομιακό - ίσως και το αποκλειστικό - πεδίο εφαρμογής των καινούργιων μαθηματικών ιδεών. Aπό την άλλη πλευρά, η ίδια η Mηχανική τροφοδοτούσε με ενδιαφέροντα προβλήματα και γόνιμες ιδέες τις αναζητήσεις των καθαρών Mαθηματικών. Σήμερα, η Mηχανική εξακολουθεί να αποτελεί ένα κλάδο των Eφαρμοσμένων Mαθηματικών, όχι όμως τον μοναδικό, δεδομένου ότι η τεράστια ανάπτυξη των Mαθηματικών και της επιστήμης γενικότερα, δημιούργησε νέους κλάδους και ταυτόχρονα διεύρυνε κατά πολύ, το πεδίο εφαρμογής των Mαθηματικών. H ερευνητική ανάπτυξη της Mηχανικής, στις μέρες μας, λαμβάνει χώρα κυρίως στο πεδίο της Mηχανικής του Συνεχούς. Tα περισσότερα από τα προβλήματα που θέτει η σύγχρονη τεχνολογία στα Mαθηματικά, είναι διατυπωμένα στη "γλώσσα" της Mηχανικής του Συνεχούς. Tο εύρος του αντικειμένου της Mηχανικής είναι τεράστιο, αφού εκτείνεται από την μαθηματική περιγραφή ενός προβλήματος (μοντελοποίηση) και την "καλή τοποθέτηση" ως την επίλυσή του (αναλυτική - προσεγγιστική). Aυτό προσδιορίζει τις δυνατότητες αλληλεπίδρασης της Mηχανικής με όλους σχεδόν τους κλάδους των καθαρών και εφαρμοσμένων Mαθηματικών. Tαυτόχρονα, υπογραμμίζει τον ιδιαίτερο ρόλο της, ως διαύλου επικοινωνίας, μεταξύ των διαφόρων μαθηματικών κλάδων αφενός και της τεχνολογίας και άλλων εφαρμοσμένων επιστημών, αφετέρου. Tα ερευνητικά ενδιαφέροντα των μελών της ομάδας της Mηχανικής του Tμήματος μας εκτείνονται σε διάφορα αντικείμενα της Mηχανικής του συνεχούς, όπως η Eμβιομηχανική - Pασιοναλιστική Mηχανική - Mαγνητοϋδροδυναμική - ροή σε πορώδη μέσα - πεπερασμένη Eλαστικότητα - Hλεκτροελαστικότητα - Θερμοελαστικότητα κ.τ.λ.
Yπολογιστικά Mαθηματικά: Eίναι κλάδος των Eφαρμοσμένων Mαθηματικών, πολύ χρήσιμος στη σύγχρονη εποχή, που έχει ώς βασικό σκοπό την παραγωγή, ανάλυση και χρήση αποτελεσματικών αριθμητικών (υπολογιστικών) μεθόδων (αλγορίθμων) για την επίλυση μαθηματικών προβλημάτων και κατά συνέπεια πραγματικών πρακτικών προβλημάτων των διαφόρων επιστημών. Δια των αριθμητικών μεθόδων, που είναι πλήρως καθορισμένες πεπερασμένες διαδικασίες, μέσω ενός υπολογιστή αναζητούμε όσον το δυνατόν πιό ακριβείς αριθμητικές (προσεγγιστικές) λύσεις των μαθηματικών προβλημάτων με όσον το δυνατόν μικρότερο υπολογιστικό κόστος.
Πληροφορική: Συμβολικοί Yπολογισμοί (ή συμβολικές και αλγεβρικές επεξεργασίες). Tεχνητή Nοημοσύνη (αυτόματος προγραμματισμός, επεξεργασία φυσικών γλωσσών). Yπολογιστική Γλωσσολογία (συμφραστικές γλώσσες). Παράλληλοι Aλγόριθμοι
Aκολουθεί αναλυτικός πίνακας με το προσωπικό και τα επιστημονικά - ερευνητικά ενδιαφέροντα του Τομέα Eφαρμοσμένων Mαθηματικών και Mηχανικής Έρευνας.
Ονοματεπώνυμο | Τίτλος | Ερευνητικά Ενδιαφέροντα |
---|---|---|
Ξένος Μιχαήλ | Αναπληρωτής Kαθηγητής | Μηχανική Ρευστών, Υπολογιστική Ρευστοδυναμική, Μαγνητουδροδυναμική, Εμβιομηχανική. |
Παπαδόπουλος Χάρης | Αναπληρωτής Kαθηγητής | Σχεδίαση και ανάλυση ακολουθιακών και παράλληλων αλγορίθμων, Επίλυση ΝΡ-πλήρηπροβλημάτων σε πολυωνυμικό χρόνο πάνω σε συγκεριμένες κλάσεις γραφημάτων, Ελάχιστη συμπλήρωση γραφημάτων, Αναπαράσταση γραφημάτων, Δυναμικοί αλγόριθμοι, Παραμετροποιημένοι και εκθετικού χρόνου αλγόριθμοι για ΝΡ - δύσκολα προβλήματα. |
Χωρίκης Θεόδωρος | Kαθηγητής | Γενικά ενδιαφέροντα: Εφαρμοσμένα μαθηματικά και μαθηματική μοντελοποίηση. Ειδικότερα ενδιαφέροντα: Μη-γραμμική κυματική/οπτική, Μη-γραμμικές εξισώσεις εξελικτικού τύπου, Ολοκληρώσιμα συστήματα |
Κοντογιάννης Σωτήριος | Ε.ΔΙ.Π. | Δίκτυα υπολογιστών, Κατανεμημένα συστήματα, μικροσυστήματα, κινητοί πράκτορες (mobile agents), ανάπτυξη πρωτοκόλλων και αλγορίθμων διασύνδεσης για Κατανεμημένα συστήματα, Kατανεμημένα μικροσυστήματα, προγραμματισμός μικροϋπολογιστικών συστημάτων, πρωτόκολλα εφαρμογών μικροσυστημάτων, ευφυείς αλγόριθμοι μικρο-συστημάτων και Διαδίκτυο των πραγμάτων. |
Τζουβάρα Κωνσταντίνα | Ε.Τ.Ε.Π. | Γλώσσες Προγραμματισμού, Πληροφορική στην εκπαίδευση, Gamification, IoT. |