COURSE OUTLINE

GENERAL

SCHOOL	School of Science				
ACADEMIC UNIT	Department of Mathematics				
LEVEL OF STUDIES	Postgraduate				
COURSE CODE	ΣΤ16		SEMESTER	2°	
COURSE TITLE	Non linear progra	mming			
INDEPENDENT TEACHING ACTIVITIES					
if credits are awarded for separate components of the		the	WEEKLY		
course, e.g. lectures, laboratory exercises, etc. If the credits		redits	TEACHING	6	CREDITS
are awarded for the whole of the course, give the weekly			HOURS		
teaching hours and the total credits					
	Le	ectures	3		6
Add rows if necessary. The organisation of teaching and the					
teaching methods used are described in detail at (d).					
COURSE TYPE	special backgroun	d			
general background,					
special background, specialised					
general knowledge, skills					
development					
PREREQUISITE COURSES:	No				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	yes				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course aims to introduce students to the the fundamentals of non-linear optimization. Upon successful completion of the course the student will be able to:

1. understand the basic principles of nonlinear optimization problems.

2. use some of the commonly used algorithms for nonlinear optimization (unconstrained

and constrained)				
3. select the appropriate algorithm for a particular optimization problem.				
General Competences				
Taking into consideration the general competences that the degree-holder must acquire (as				
these appear in the Diploma Supplement and appear below), at which of the following does				
the course aim?				
Search for, analysis and synthesis of data	Project planning and management			
and information, with the use of the	Respect for difference and multiculturalism			
necessary technology	Respect for the natural environment			
Adapting to new situations	Showing social, professional and ethical			
Decision-making	responsibility and sensitivity to gender issues			
Working independently	Criticism and self-criticism			
Team work	Production of free, creative and inductive			
Working in an international environment	thinking			
Working in an interdisciplinary	Others			
environment				
Production of new research ideas				
Working independently				
Decision-making				
Adapting to new situations				
Production of free, creative and inductive thinking				
Synthesis of data and information, with the use of the necessary technology				

SYLLABUS

Introduction to unconstrained and constrained optimization, Lagrange Multipliers, Karush-Kuhn-Tucker conditions, Line Search, Trust Region, Conjugate Gradient, Newton, Quasi-Newton methods, Quadratic Programming, Penalty Barrier and Augmented Lagrangian Methods.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
Face-to-face, Distance learning,			
etc.			
USE OF INFORMATION AND	Lindo/Lingo Software, Mathematica		
COMMUNICATIONS	Email, class web.		
TECHNOLOGY			
Use of ICT in teaching, laboratory			
education, communication with			
students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of	Lectures	39	
teaching are described in detail.	Independent study	78	
Lectures, seminars, laboratory	study and analysis of	33	
practice, fieldwork, study and	bibliography, Fieldwork		
analysis of bibliography, tutorials,	(6-7 set of homework)		
placements, clinical practice, art			
workshop, interactive teaching,			
educational visits, project, essay			
writing, artistic creativity, etc.			
The student's study hours for each			
learning activity are given as well	Course total	150	

as the hours of non-directed study according to the principles of the	
ECTS	
STUDENT PERFORMANCE	LANGUAGE OF EVALUATION: Greek
Description of the evaluation	METHODS OF EVALUATION: written work, oral
procedure	examination (100%)
Language of evaluation, methods	
of evaluation, summative or	
conclusive, multiple choice	
questionnaires, short-answer	
questions, open-ended questions,	
problem solving, written work,	
essay/report, oral examination, public presentation, laboratory	
work, clinical examination of	
patient, art interpretation, other	
Specifically-defined evaluation	
criteria are given, and if and	
where they are accessible to	
students.	

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

Bazarra, Sherali, and Shetty Nonlinear Programming: Theory and Algorithms, 3rd Edition, John Wiley & Sons, 2006.

Bertsekas D. Nonlinear Programming, Athena Scientic, 2004.

Γεωργίου Α. Βασιλείου Π.-Χ. Μη γραμμικές μέθοδοι βελτιστοποίησης, Εκδόσεις Ζήτη, 1996. Παπαγεωργίου Μ. Μη γραμμικός προγραμματισμός. Ηλεκτρονικό σύγγραμμα

- Related academic journals:

Journal of Optimization Theory and Applications