COURSE OUTLINE

GENERAL

SCHOOL	School of Science				
ACADEMIC UNIT	Department of Mathematics				
LEVEL OF STUDIES	Undergrafuate				
COURSE CODE	MAY514		SEMESTER	Wi	nter
COURSE TITLE	Introduction to Differential Equations				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	i	CREDITS	
			5		7,5
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	General bad	ckground			
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBSITE (URL)	Through the Ioannina	e platform "e-c	ourse" of the	Univ	versity of

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course is the introductory course to ordinary differential equations and aims to a general introductory description of the area of ordinary differential equations. It is expected that the students take basic knowledge on:

A) How to solve linear ordinary differential equations of first order and some equations of special types.

- B) Existence and uniqueness of solutions to ordinary differential equations
- C) General theory of linear o.d.e.
- D) How to solve linear equations and systems with constant coefficients.
- E) How to solve linear o.d.e. of second order by the use of power series.
- F) Use of Laplace transformations to solve o.d.e..
- G) How to solve first order linear partial differential equations.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data	Project planning and management
and information, with the use of the	Respect for difference and multiculturalism
necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender issues
Working independently	Criticism and self-criticism
Team work	Production of free, creative and inductive
Working in an international environment	thinking
Working in an interdisciplinary	Others
environment	
Production of new research ideas	

Working independently Production of free, creative and inductive thinking Analytic and synthetic thinking

SYLLABUS

Introduction to differential equations and initial value problems. O.d.e.'s of some special types (Bernoulli, Riccati, Clairaut, Lagrange). Equations with separated variables. Exact equations. Integral factors. Second order equations reduced to first order equations. Existence and uniqueness theorems. General theory of linear o.d.e.'s. Linear equations and systems with constant coefficients. Power series solutions for second order d.e.'s. Partial differential equations: solutions to first order equations, classification of linear equations of second order. Applications of d.e.'s to problems arising in various areas of science and technology.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face (Lectures)	
Face-to-face, Distance learning,		
etc.		
USE OF INFORMATION AND	The platform "e-course" of	the University of Ioannina
COMMUNICATIONS		
TECHNOLOGY		
Use of ICT in teaching, laboratory		
education, communication with		
students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	45
teaching are described in detail.	Assignments,/Tests	52,5

Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay		
writing, artistic creativity, etc.	Individual study	90
The student's study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS	Course total	187,5
STUDENT PERFORMANCE EVALUATION <i>Description of the evaluation</i> <i>procedure</i>	Written Final Examination (Theory and Exercises) 100%
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to		

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Related academic journals:

Χ. Φίλος, Μία Εισαγωγή στις Διαφορικές Εξισώσεις

Ν. Μυλωνάς, Χ. Σχοινάς, Διαφορικές Εξισώσεις, Μετασχηματισμοί και Μιγαδικές Συναρτήσεις

Θ Κυβεντίδη, Διαφορικές Εξισώσεις

R. Agarwal, D. O'Regan, H. Agarwal, Introductory Lectures on Ordinary Differential Equations

F. Ayres, Differential Equations

-Relative Journals