COURSE OUTLINE

GENERAL

SCHOOL	School of Scien	се			
ACADEMIC UNIT	Department of Mathematics				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	MAY331	SEMESTER 3rd			
COURSE TITLE	Introduction to Probability				
INDEPENDENT TEACHING ACTIVITIES					
if credits are awarded for separa	te components o	WEEKLY TEACHING HOURS		CREDITS	
e.g. lectures, laboratory exercises,	•				
for the whole of the course, give t	•	ng hours and			
the total c					
	Lectures 5 7,5		7,5		
Add rows if necessary. The organisation of teaching and the					
teaching methods used are described in detail at (d).					
COURSE TYPE	General backgr	ound			
general background,					
special background, specialised					
general knowledge, skills development					
PREREQUISITE COURSES:					
PREREQUISITE COURSES.					
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:	U.C.K				
IS THE COURSE OFFERED TO	Yes (in English, reading Course)				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	http://www.math.uoi.gr/~kzograf/SyllabousProbabilityEnglish.pdf				
	,,,,,,,,,,,,,,,-				

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The aim of this course is to provide with a comprehensive understanding of the basic definitions of probability and the basic principles and laws of probability theory. Further, the introduction to the concepts of the random variable and the distribution function, as well as, their characteristics, such as the mean, variance, moments, moment generating function, etc., is included in the main scopes of the course. Special distributions, such as binomial, geometric, Pascal, Poisson, uniform,

exponential, gamma, normal distribution, etc. are studied and their use and application is indicated.

The course is compulsory, entry-level and focuses on developing skills to understand, design and manufacture non-deterministic, stochastic (i.e. probabilistic) models in order to study the respective problems. At the end of the course students should be able to :

(1) Work with classical and empirical definition of probability in order to calculate probabilities, by using combinatorial analysis.

(2) Appreciate the axiomatic foundation of the concept of probability and use it in order to prove probabilistic laws and properties.

(3) Understand and utilize probabilistic laws as the multiplicative theorem, the total probability theorem, Bayes' formula, and independence for modeling respective problems. Emphasis is given to the use of interdisciplinary problems which are modeled by the application of the above probabilistic rules.

(4) Understand the necessity of introducing and studying the concept of random variable, its characteristics (mean, variance, etc.) and the corresponding probability distribution. Special discrete and continuous distributions are defined and utilized for the description, analysis and study of applications from different areas (lifetime distributions, reliability etc.).

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others

Working independently Decision-making Production of free, creative and inductive thinking Criticism and self-criticism

SYLLABUS

Basic ideas and laws of probability: Sample space and events. Classical-Statistical and Axiomatic definition of probability. Properties of probability. Elements of combinatorial analysis. Random variables and distribution functions. Discrete and continuous random variables and distribution functions. Standard discrete and continuous distributions: Binomial, Geometric, Pescal, Poisson, Uniform, Exponential, gamma, Normal etc. Characteristics of random variables and probability distributions: Expectation, variance, moments, moment generating function, properties. Transformation of random variables.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Classroom (face-to-face)			
Face-to-face, Distance learning,				
etc.				
USE OF INFORMATION AND	Use of ICT in communication with students			
COMMUNICATIONS				
TECHNOLOGY				
Use of ICT in teaching, laboratory				
education, communication with				
students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of	Lectures	65		
teaching are described in detail.	Working independently	100		
Lectures, seminars, laboratory	Exercises-Homeworks 22,5			
practice, fieldwork, study and				
analysis of bibliography, tutorials,				
placements, clinical practice, art				
workshop, interactive teaching,				
educational visits, project, essay				
writing, artistic creativity, etc.				
	Course total	187,5		
The student's study hours for each				
learning activity are given as well				
as the hours of non-directed study				
according to the principles of the				
ECTS				
EVALUATION	Final written even in C	cook (in coco of Fragmus		
Description of the evaluation procedure	Final written exam in Greek (in case of Erasmus			
procedure	students in English) which includes resolving application problems.			
Language of evaluation, methods				
of evaluation, summative or				
conclusive, multiple choice				
questionnaires, short-answer				
questions, open-ended questions,				
problem solving, written work,				
essay/report, oral examination,				
public presentation, laboratory				
work, clinical examination of				
patient, art interpretation, other				
Specifically-defined evaluation				
criteria are given, and if and				
where they are accessible to				
students.				

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

Books in English:

Ross, S. (1998). A First Course in Probability. 5th Edition. Prentice Hall, Inc.

Roussas, G. (2007). Introduction to Probability. Academic Press.

Books in Greek

Ζωγράφος, Κ. (2008). Πιθανότητες, Πανεπιστήμιο Ιωαννίνων.

Hoel, P., Port, S. and Stone, C. (2001). Εισαγωγή στη Θεωρία Πιθανοτήτων. Πανεπιστημιακές Εκδόσεις Κρήτης.

Κουνιά, Σ. και Μωϋσιάδη, Χ. (1995). Θεωρία Πιθανοτήτων Ι. Εκδόσεις Ζήτη, Θεσσαλονίκη.

Κούτρας, Μ. (2012). Εισαγωγή στη Θεωρία Πιθανοτήτων και Εφαρμογές. Εκδόσεις Α. Σταμούλης. Αθήνα.

Παπαϊωάννου, Τ. (2000). Εισαγωγή στις Πιθανότητες. Εκδόσεις Α. Σταμούλης. Αθήνα.

Χαραλαμπίδη, Χ. (1990). Θεωρία Πιθανοτήτων και Εφαρμογές. Τεύχος 1. Εκδόσεις Συμμετρία. Αθήνα.