COURSE OUTLINE

GENERAL

SCHOOL	School of Scient	ce		
ACADEMIC UNIT	Department of Mathematics			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	MAY123		SEMESTER 1	
COURSE TITLE	Number Theory			
INDEPENDENT TEACHING ACTIVITIES				
if credits are awarded for separate components of the course,			WEEKLY	
e.g. lectures, laboratory exercises,	2s, laboratory exercises, etc. If the credits are awarded TEACHING			CREDITS
for the whole of the course, give the weekly teaching hours and				
the total c	redits			
			4	7,5
Add rows if necessary. The organisation of teaching and the				
teaching methods used are described in detail at (d).				
COURSE TYPE	General backgr	ound		
general background,				
special background, specialised				
general knowledge, skills				
development				
PREREQUISITE COURSES:	NO			
LANGUAGE OF INSTRUCTION	Greek			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	Yes			
ERASMUS STUDENTS				_
COURSE WEBSITE (URL)	http://users.uoi.gr/abeligia/NumberTheory/NT2016/NT2016.html			

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The main purpose of the course is the study of the structure and basic properties of all natural numbers, and more generally of all integers. This study is based on the fundamental concept of divisibility of natural numbers, and the (unique) factorization of a natural number into prime factors.

The most important ideas, concepts and results that allow us to understand the structure and fundamental properties of all natural numbers with respect to divisibility, are as follows (Keywords of course):

- Divisibility, prime numbers, Euclidean algorithm, greatest common divisor and least common multiple.
- Congruences and systems of congruences, Chinese remainder theorem.
- Arithmetical functions and Moebius inversion formula. Euler's φ-function.
- Theorems of Fermat, Euler and Wilson.
- Primitive mod p roots. Theory of indices and quadratic residues.
- Law of quadratic reciprocity.
- Applications to cryptosystems.

We will formulate and prove several theorems concerning the structure of all integers through the concept of divisibility. During the course will analyse applications of Number Theory to other sciences, and particularly to Cryptography.

This course is an introduction to the basic results, the basic methods, and the basic problems of elementary number theory, and requires no special knowledge of other subjects of the curriculum.

At the end of the course we expect the student to (a) have understood the definitions and basic theorems concerning the divisibility structure of the integers which are discussed in the course, (b) to have understood how they are applied in discrete examples, (c) to be able to apply the material in order to extract new elementary conclusions, and finally (d) to perform some (no so obvious) calculations.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data	Project planning and management
and information, with the use of the	Respect for difference and multiculturalism
necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender issues
Working independently	Criticism and self-criticism
Team work	Production of free, creative and inductive
Working in an international environment	thinking
Working in an interdisciplinary	Others
environment	
Production of new research ideas	

The course aims to enable the undergraduate student to acquire the ability to analyse and synthesize basic knowledge of the theory of numbers, to apply basic examples in other areas, and in particular to solve concrete problems concerning properties of numbers occurring in everyday life. The contact of the undergraduate student with the ideas and concepts of the theory of numbers, promotes the creative, analytical and deductive thinking and the ability to apply abstract knowledge in various fields.

SYLLABUS

- Divisibility.
- Congruences mod m.
- Chinese remainder theorem.
- Arithmetical functions and Moebius inversion formula.
- The theorems of Fermat, Euler and Wilson.
- Primitive roots mod p.
- The theory of indices and the Law of quadratic reciprocity.
- Applications to cryptography.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face	
Face-to-face, Distance learning,		
etc.		
USE OF INFORMATION AND		
COMMUNICATIONS		
TECHNOLOGY		
Use of ICT in teaching, laboratory		
education, communication with		
students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	52
teaching are described in detail.		
Lectures, seminars, laboratory		
practice, fieldwork, study and		
analysis of bibliography, tutorials,		
placements, clinical practice, art	Study of the elements of	26
workshop, interactive teaching,	the theory and methods	
educational visits, project, essay	for solving exercises	
writing, artistic creativity, etc.		
The student's study hours for each		
learning activity are given as well		
as the hours of non-directed study	Course total	78
according to the principles of the		
FCTS		
STUDENT PERFORMANCE		
EVALUATION	Written final exams. in Gree	ek language, combining
Description of the evaluation	analysis of theoretical topics	and problem solving.
procedure		
Language of evaluation, methods		
of evaluation, summative or		
conclusive, multiple choice		
questionnaires, short-answer		
questions, open-ended questions,		
problem solving, written work,		
essay/report, oral examination,		
public presentation, laboratory		
work, clinical examination of		

patient, art interpretation, other	
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- 1. **D. Poulakis**: "Number theory", Ziti Press, (1997).
- 2. D. Deriziotis: "An introduction to Number theory", Sofia Press, (2007).

- Related academic journals: -