COURSE OUTLINE

GENERAL

SCHOOL	School of Science				
ACADEMIC UNIT	Department of Mathematics				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	MAY112 SEMESTER Winter				
COURSE TITLE	Fundamental Concepts of Mathematics				
INDEPENDENT	INDEPENDENT TEACHING ACTIVITIES				
if credits are awarded f	or separate compo	WEEKLY TEACHING			
course, e.g. lectures, labor		-	HOURS		CREDITS
•	ble of the course, give the weekly				
teaching hours	s and the total cred				
			5		7,5
Add rows if necessary. The organisation of teaching and the					
teaching methods used are	[
COURSE TYPE	General backgrou	ind			
general background,					
special background,					
specialised general					
knowledge, skills					
development PREREQUISITE					
COURSES:					
COURSES.					
LANGUAGE OF	Greek				
INSTRUCTION and	UICEN				
EXAMINATIONS:					
IS THE COURSE OFFERED	Yes				
TO ERASMUS STUDENTS					
COURSE WEBSITE (URL)	http://www.math.uoi.gr/GR/studies/undergraduate/courses/may112.html				
		C · · ·			•

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

As a first step, the students get familiar with basic tools of logic, set theory (set operations and properties), relations and functions. Emphasis is given to notions such as collections and families (coverings,) bounds (max, min, sup, inf) as well as to images and pre-images of sets under functions. Part of the kernel of the course is a detailed axiomatic construction of the real numbers aiming that the students acknowledge this set as result of an axiomatic construction rather than of an empiric approach, yet the value and the significancy of the axiomatic foundation of mathematical structures be apparent. In the section concerning cardinality of sets, besides arithmetic of finite sets, students classify types of infinite sets (finite, numerable, denumerable) and approach in an abstract way the notion of infinity in relation with sets in common use as the sets of naturals, integers, rationals , and reals. A major course learning outcome is that assimilation of the offered knowledge will create a good qualitative background so that students be able to proceed with adequacy to studying other branches of mathematics.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas

Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others

Analysis and synthesis of data and information Individual work Team work Production of creative and inductive thinking Production of analytical and synthetic thinking

SYLLABUS

Elements of Logic. Basic set theory, operations and properties, power set, Cartesian products, collections. Relations, properties, equivalence relations, order relations, bounded sets, well ordered sets, principle of infinite reduction, functions, one to one functions, onto functions,

Image and pre image of a set, functions and ordered sets. Families. The set of real numbers: axiomatic approach. The sets of natural numbers, integers. The field of rational numbers. Roots of non negative real numbers. The set if irrational numbers.

The axiom of completeness and equivalent statements. Equivalent sets. Finite sets. Infinite sets. Schroder-Bernstein theorem. Numerable sets. At most numerable sets. Denumerable sets. Cantor' theorem. Axiom of Choice and equivalent statements. A first approach to the necessity of an axiomatic foundation of sets.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face
Face-to-face, Distance learning,	
etc.	

USE OF INFORMATION AND	Use of ICT for presentation	of assays and assignments		
COMMUNICATIONS	Use of ICT for presentation of essays and assignments.			
TECHNOLOGY				
Use of ICT in teaching, laboratory				
education, communication with				
students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of	Lectures	65		
teaching are described in detail.	Homework	20		
Lectures, seminars, laboratory	Individual work	100		
practice, fieldwork, study and		100		
analysis of bibliography, tutorials,	Course total	185		
placements, clinical practice, art				
workshop, interactive teaching,				
educational visits, project, essay				
writing, artistic creativity, etc.				
The student's study hours for each				
learning activity are given as well				
as the hours of non-directed study				
according to the principles of the				
ECTS				
STUDENT PERFORMANCE				
EVALUATION	Written examination at the end of the semester			
Description of the evaluation	including theory and problems-exercises.			
procedure				
Language of evaluation, methods				
of evaluation, summative or				
conclusive, multiple choice				
questionnaires, short-answer				
questions, open-ended questions,				
problem solving, written work,				
essay/report, oral examination,				
public presentation, laboratory				
work, clinical examination of				
patient, art interpretation, other				
Specifically-defined evaluation				
criteria are given, and if and				
where they are accessible to				
students.				

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Παναγιώτης Χρ. Τσαμάτος, Θεμελιώδεις Έννοιες Μαθηματικής Ανάλυσης, Εκδόσεις Τζιόλα, 2009.

- Α. Τσολομύτης, Σύνολα και Αριθμοί, Leader Books, 2004.

- K. G. Binmore, Logic, Sets and Numbers, Cambridge University Press, 1980.

- W. W. Fairchild and C. I. Tulcea, Sets, W. B. Shaunders Co. Philadelphia, 1970.

- S. Lipschutz, Set Theory and Related Topics, Schaum's Outline Series, New York, 1965.

- D. Van Dalen, H. C. Doets and H. Deswart, Sets: Naïve, Axiomatic and Applied, Pergamon Press, Oxford, 1987.