COURSE OUTLINE

GENERAL

SCHOOL	School of Science			
ACADEMIC UNIT	Department of Mathematics			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	MAY111		SEMESTER	1st
COURSE TITLE	Infinetisimal Calcu	lus 1		
INDEPENDENT TEACHING ACTIVITIES		WEEKLY		
course, e.g. lectures, laboratory exercises, etc. If the credits		TEACHING	CREDITS	
are awarded for the whole of the course, give the weekly			HOURS	
teaching hours and the total credits				
			5	7.5
Add rows if necessary. The organisation of teaching and the				
	teaching methods used are described in detail at (a).			
course TTPE	General backgroui	lu		
special background specialised				
appendi buckyrouna, specialisea				
development				
PREREQUISITE COURSES:	None			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO	Yes (exams in English are provided for foreign			
ERASMUS STUDENTS	students)			
COURSE WEBSITE (URL)	http://www.math.uoi.gr/GR/studies/undergradu			
	ate/courses/may111.htm			

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas

Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others

This course is the first contact of the undergraduate student with the branch of Analysis. In this course the students will get the necessary knowledge for a large portion of their studies in the Department of Mathematics. They also learn that the verification of any mathematical statement requires a proof.

- a) The students learn the axiomatic foundation of the set R of real numbers. Emphasis is given in the notions of supremum and infimum as well as in the use of mathematical induction.
- b) The students learn the notion of convergence of sequences, having their first contact with the ϵ -n₀ definition. They also learn how to calculate limits of sequences.
- c) The students learn the notion of continuity of functions, having their first contact with the ϵ - δ definition. They learn the characterization of continuity via sequences and the proof of the basic theorems concerning continuous functions. They also learn the ϵ - δ definition regarding limits of real functions.
- d) The students learn the notion of derivation, the use of first and second derivative in order to study the monotonicity and the curvature of a real function, as well as applications of derivatives in sciences. They also learn the proof of De L' Hospital Theorem and the theory concerning the Mean Value Theorems.

SYLLABUS

Real numbers, axiomatic foundation of the set of real numbers (emphasis in the notion of supremum and infimim), natural numbers, induction, classical inequalities.

Functions, graph of a function, monotone functions, bounded functions, periodic functions. Injective and surjective functions, inverse of a function. Trigonometric functions, inverse trigonometric functions, exponential and logarithmic functions, hyperbolic and inverse hyperbolic functions.

Sequences of real numbers, convergent sequences, monotone sequences, sequences defined by recursion, limits of monotone sequences, nested intervals. The notion of subsequence, Bolzano Weierstass' Theorem, Cauchy sequences. Accumulation points of sequences, upper and lower limit of a sequence (limsup, liminf).

Continuity of functions, accumulation points and isolated points, limits of functions, one sided limits, limits on plus infinity and minus infinity. Continuity of several basic functions, local behaviour of a continuous function. Bolzano Theorem and intermediate value theorem. Characterization of continuity via sequences, properties of continuous functions defined on closed intervals, continuity of inverse functions.

Derivative of a function, definition and geometric interpretation, examples and applications in sciences. The derivatives of elementary functions, derivation rules, higher order derivation. Rolle's Theorem, Mean Value Theorem, Darboux's theorem. Derivative and the monotonicity of a function, extrema of functions, convex and concave functions, inflection points. Derivation of inverse functions. Generalized Mean Value Theorem, De L' Hospital rule. Study of functions using derivatives.

TEACHING and LEARNING METHODS - EVALUATION	

DELIVERY Face-to-face, Distance learning, etc.	Due to the theoretical nature of this course the teaching is exclusively given in the blackboard by the teacher.		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	The students may contact the means, i.e. by e-mail.	neir teachers by electronic	
TEACHING METHODS	Activity	Semester workload	
The manner and methods of	Lectures	65 hours	
teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Studying theory and solving exercises	65 hours	
The student's study hours for each learning activity are given as well	Course total	130 hours	

as the hours of non-directed study	
according to the principles of the	
ECTS	
STUDENT PERFORMANCE	
EVALUATION	
Description of the evaluation	Exams in the end of the semester (mandatory).
procedure	Assignments of exercises during the semester
	(optional).
Language of evaluation, methods	
of evaluation, summative or	
conclusive, multiple choice	
questionnaires, short-answer	
questions, open-ended questions,	
problem solving, written work,	
essay/report, oral examination,	
public presentation, laboratory	
work, clinical examination of	
patient, art interpretation, other	
Specifically-defined evaluation	
criteria are given, and if and	
where they are accessible to	
students.	

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Γενικά Μαθηματικά -Απειροστικος Λογισμός τόμος Ι, Χ. Αθανασιάδης, Ε.
 Γιαννακούλιας, Σ. Γιωτόπουλος, Εκδόσεις Συμμετρία.
- "Απειροστικός Λογισμός Τόμος Ι" Σ. Νεγρεπόντης, Σ. Γιωτόπουλος, Ε.
 Γιαννακούλιας, Εκδόσεις Ζήτη.
- "Απειροστικός Λογισμός Ι" Σ. Ντούγιας, Leader Books.
- "Thomas, Απειροστικός Λογισμός", R.L. Finney, M. D. Weir, F.R. Giordano, Πανεπιστημιακές Εκδόσεις Κρήτης, (Απόδοση στα ελληνικά: Μ. Αντωνογιαννάκης).
- "Διαφορικός και Ολοκληρωρικός Λογισμός: Μια εισαγωγή στην Ανάλυση", Michael Spivak, Πανεπιστημιακές Εκδόσεις Κρήτης (Μετάφραση στα ελληνικά: Α. Γιαννόπουλος).