COURSE OUTLINE

GENERAL

SCHOOL	School of Science			
ACADEMIC UNIT	Department of Mathematics			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	MAE_822 SEMESTER 8			
COURSE TITLE	Topics in ge	eometry		
INDEPENDENT TEACHI	NG ACTIVITI	S		
if credits are awarded for separ	ate compone	ents of the	WEEKLY	
course, e.g. lectures, laboratory ex	kercises, etc.	TEACHING	CREDITS	
are awarded for the whole of the	e course, give	the weekly	HOURS	
teaching hours and th	e total credits			
			3	6
Add rows if necessary. The organis	ation of teaching and the			
teaching methods used are describ	ed in detail at (d).			
COURSE TYPE	Special bac	kground		
general background,				
special background, specialised				
general knowledge, skills				
development				
PREREQUISITE COURSES:	Linear Algebra, Elementary differential geometry,			
	Calculus, Ai	nalysis of sever	al variables	
LANGUAGE OF INSTRUCTION	greek			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	YES (in English)			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)				

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

This course introduces the notion of differential forms. The aim of the course is to prove Stokes theorem for manifolds and to provide applications in differential geometry as well as in other areas of mathematics. The course requires tools from Linear Algebra, Calculus of several variables, Topology and elementary differential geometry.

On completion of the course the student sh meaning of Stokes theorem.	nould be familiar with differential forms and the
General Competences Taking into consideration the general comp these appear in the Diploma Supplement ar the course aim?	petences that the degree-holder must acquire (as nd appear below), at which of the following does
Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others
 Work autonomously. Work in teams. Develop critical thinking skills. 	
SYLLABUS	

Differential forms in Rⁿ, line integrals, differentiable manifolds (with or without boundary), integration of differential forms on manifolds, theorem of Stokes and applications. Poincarè

lemma, differential geometry of surfaces, structure equations of $\ensuremath{\mathsf{R}}^n$.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Direct	
Face-to-face, Distance learning,		
etc.		
USE OF INFORMATION AND		
COMMUNICATIONS		
TECHNOLOGY		
Use of ICT in teaching, laboratory		
education, communication with		
students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	39
teaching are described in detail.	Autonomous study	111
Lectures, seminars, laboratory		
practice, fieldwork, study and		
analysis of bibliography, tutorials,		
procements, clinical practice, art		
aducational visits project assay		
writing artistic creativity etc		
The student's study hours for each	Course total	150
learning activity are given as well		
as the hours of non-directed study		
according to the principles of the		
ECTS		
STUDENT PERFORMANCE	Written final examination	
EVALUATION		
Description of the evaluation		
procedure		
Language of evaluation, methods		
of evaluation, summative or		
questionnaires short answer		
questions open-ended questions		
problem solving written work		
essav/report. oral examination.		
public presentation, laboratory		
work, clinical examination of		
patient, art interpretation, other		
Specifically-defined evaluation		
criteria are given, and if and		
where they are accessible to		
students.		

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Related academic journals:

Manfredo do Carmo, Διαφορικές Μορφές, Θεωρία και Εφαρμογές, Prentice-Hall, Πανεπιστημιακές Εκδόσεις Κρήτης, 2010