COURSE OUTLINE

GENERAL

SCHOOL	School of Science				
ACADEMIC UNIT	Department of Mathematics				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	MAE812		SEMESTER	8tł	า
COURSE TITLE	Measure theory				
INDEPENDENT TEACHI					
if credits are awarded for separ	ate compone	WEEKLY TEACHING		CREDITS	
course, e.g. lectures, laboratory ex	kercises, etc.				
are awarded for the whole of the	r the whole of the course, give the weekly				
teaching hours and the	hours and the total credits				
			3		6
Add rows if necessary. The organisation of teaching and the					
teaching methods used are describ	teaching methods used are described in detail at (d).				
COURSE TYPE	Specialized general knowledge and special backround.				
general background,					
special backgrouna, specialisea					
general knowledge, skills					
	None (from the trained point of view)				
PREREQUISITE COURSES:	None (from the typical point of view).				
	from the following courses is required				
	Infineticimal Calculus I				
	Infinetisimal Calculus I				
	Introduction to Topology				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes (exams in English are provided for foreign students)				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After completing this course the students will

- a) Have knowledge of the basic properties of σ -algebras, of measures and especially of Lebesgue measure on \Box and on \Box^{k} .
- b) Know the basic properties of measurable functions, the definition of Lebesgue integral in a random measure space.
- c) Be able to apply the basic theorems concerning Lebesgue intergral (Monotone Convergence Theorem, Dominated Convergence Theorem).
- d) Understand the difference between Riemann integral and Lebesgue integral on $\ \square$.

General Competences

Production of new research ideas

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data	Project planning and management
and information, with the use of the	Respect for difference and multiculturalism
necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender issue
Working independently	Criticism and self-criticism
Team work	Production of free, creative and inductive
Working in an international environment	thinking
Working in an interdisciplinary	Others
environment	

S

The course promotes inductive and creative thinking and aims to provide the student with the theoretical background and skills to use measure theory and integration.

SYLLABUS

Algebras, algebras, (positive) measures, outer measures, Caratheodory's Theorem (concerning the construction of a measure from an outer measure). Lebesgue measure. Lebesgue integral, Lebesgue's Monotone Convergence Theorem, Lebesgue's Dominated Convergence Theorem. Product measures, Fubini's theorem. Signed measures. Hahn's, Jordan's and Lebesgue's analysis Theorems. Radon-Nikodym Theorem. L^p spaces.

DELIVERY	Teaching on the blackboard by the teacher.			
Face-to-face, Distance learning,	,			
etc.				
USE OF INFORMATION AND	Communication with the teacher by electronic means			
COMMUNICATIONS	(i.e. e-mail).			
TECHNOLOGY				
Use of ICT in teaching, laboratory				
education, communication with				
students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of	Lectures	39 hours		
teaching are described in detail.	Studying theory and	38 hours		
Lectures, seminars, laboratory	solving exercises			
practice, fieldwork, study and				
analysis of bibliography, tutorials,				
placements, clinical practice, art				
workshop, interactive teaching,				
educational visits, project, essay				
writing, artistic creativity, etc.				
The student's study hours for each	Course total	77 hours		
learning activity are given as well		// 10013		
as the hours of non-directed study				
according to the principles of the				
ECTS				
STUDENT PERFORMANCE				
EVALUATION				
Description of the evaluation	Exams in the end of th	ne semester (mandatory),		
procedure	intermediate exams (or	otional), assignments of		
	exercises during the semest	er (optional).		
Language of evaluation, methods				
of evaluation, summative or				
questionnaires, short-answer				
questions, open-ended questions,				
problem solving, written work,				
essay/report, oral examination,				
public presentation, laboratory				
work, clinical examination of				
putient, art interpretation, other				
Specifically-defined evaluation				
criteria are given and if and				
where they are accessible to				
students				
Students.				

ATTACHED BIBLIOGRAPHY

- Suggested bibliography: Θεωρία Μέτρου, Γ. Κουμουλλής, Σ. Νεγρεπόντης, Εκδόσεις Συμμετρία (κωδικός στο σύστημα Εύδοξος: 45284).

Measure Theory, Donald Cohn, Birkhauser.