COURSE OUTLINE

GENERAL

SCHOOL	School of Science				
ACADEMIC UNIT	Department of Mathematics				
LEVEL OF STUDIES	Undergraduate				
COURSE CODE	MAE646 SEMESTER 6				
COURSE TITLE	Techniques of Mathematical Modelling				
INDEPENDENT TEACHI if credits are awarded for separ course, e.g. lectures, laboratory ex are awarded for the whole of the teaching hours and the	rate components of the xercises, etc. If the credits e course, give the weekly		WEEKLY TEACHING HOURS		CREDITS
			3		6
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special bac	kground			
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBSITE (URL)					

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course is a first introduction to the basic methods of applied mathematics and particularly in perturbation theory. There are many situations in mathematics where one finds expressions that cannot be calculated with absolute precision, or where exact answers are too complicated to provide useful information. In many of these cases, it is possible to find a relatively simple expression which, in practice, is just as good as the complete, exact

solution. The asymptotic analysis deals with methods for finding such approximations and has a wide range of applications, both in the fields of pure mathematics such as combinatorics, probability, number theory and applied mathematics and computer science, for example, the analysis of runtime algorithms. The goal of this course is to introduce some of the basic techniques and to apply these methods to a variety of problems.

Upon completion of this course students will be able to:

- Recognize the practical value of small or large parameters for calculating mathematical expressions.
- Understand the concept of (divergent) asymptotic series, and distinguish between regular and singular perturbations.
- Find dominant behaviors in algebraic and differential equations with small and large parameters.
- Calculate dominant behavior of integrals with a small parameter.
- Find a (in particular cases) the full asymptotic behavior of integrals.
- Identify the boundary layers in solutions of differential equations, and apply appropriate expansions to calculate the dominant solutions.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data	Project planning and management
and information, with the use of the	Respect for difference and multiculturalism
necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender issues
Working independently	Criticism and self-criticism
Team work	Production of free, creative and inductive
Working in an international environment	thinking
Working in an interdisciplinary	Others
environment	
Production of new research ideas	

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making

SYLLABUS

- Introduction and notation of perturbation theory
- Regular and singular perturbations
- Asymptotic expansions of integrals
- Asymptotic solutions of linear and nonlinear differential equations
- Laplace and Fourier transforms (if time permits)

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	In class
Face-to-face, Distance learning,	
etc.	
USE OF INFORMATION AND	
COMMUNICATIONS	
TECHNOLOGY	
Use of ICT in teaching, laboratory	

education, communication with		
students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	33
teaching are described in detail.	Applications in the	6
Lectures, seminars, laboratory	computer's lab	
practice, fieldwork, study and		
analysis of bibliography, tutorials,		
placements, clinical practice, art		
workshop, interactive teaching,		
educational visits, project, essay		
writing, artistic creativity, etc.		
The student's study hours for each		
learning activity are given as well	Course total	39
as the hours of non-directed study		
according to the principles of the		
ECTS		
EVALUATION	MA	
Description of the evaluation	Written exam	
procedure		
Language of evaluation, methods		
of evaluation, summative or conclusive, multiple choice		
questionnaires, short-answer		
questions, open-ended questions,		
problem solving, written work,		
essay/report, oral examination,		
public presentation, laboratory		
work, clinical examination of		
patient, art interpretation, other		
Specifically-defined evaluation		
criteria are given, and if and		
where they are accessible to		
students.		

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Related academic journals:
 - D. J. Logan, Εφαρμοσμένα Μαθηματικά, Πανεπιστημιακές Εκδόσεις Κρήτης, 2010.
 - Γ. Δάσιος, Δέκα Διαλέξεις Εφαρμοσμένων Μαθηματικών, Πανεπιστημιακές Εκδόσεις Κρήτης, 2001.
 - C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory, Springer, 1999.
 - E. J. Hinch, Perturbation Methods, Cambridge University Press, 1991.
 - A. H. Nayfeh, Perturbation Methods, Wiley-Interscience, 1973.