COURSE OUTLINE

GENERAL

SCHOOL	School of So	cience			
ACADEMIC UNIT	Department of Mathematics				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	MAE532 SEMESTER 5th				
COURSE TITLE	Stochastic	Processes			
INDEPENDENT TEACHI	NG ACTIVITIE	S			
if credits are awarded for separ	ate compone	WEEKLY			
course, e.g. lectures, laboratory ex	ercises, etc. If the credits		TEACHING	ì	CREDITS
are awarded for the whole of the	e course, give	HOURS			
teaching hours and th	teaching hours and the total credits				
	Lectures		3		6
Add rows if necessary. The organisation of teaching and the					
teaching methods used are described in detail at (d).					
COURSE TYPE	Specialised general knowledge				
general background,					
special background, specialised					
general knowledge, skills					
development					
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes (in English, reading Course)				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	www.math.uoi.gr/~abatsidis/532.html				

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The term "stochastic" is used to describe phenomena in which some randomness inherent. A stochastic process is a probabilistic model that describes the behaviour of a system that randomly evolves over time. Observing the system at discrete points in time (for instance at the end of each day or at the end of a time period, etc.) one gets a discrete time stochastic process. Observing the system continuously through time one gets a continuous time stochastic process. Objectives of the course are:

- a) Understanding the behaviour of a real system and based on its study to derive reliable results,
- b) a careful analysis of the model and the calculation of the results. A variety of classes of stochastic processes such as, the random walk, the Markov chains etc is used.

The student should be able to understand the meaning of the stochastic process, use the Markov processes for modelling systems and become familiar with their application, and be able to make various calculations and appropriate conclusions when the stochastic process describes a specific applied problem.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others

Working independently Decision-making Production of free, creative and inductive thinking Criticism and self-criticism

SYLLABUS

Random Walk: Simple random walk, absorbing barriers, reflecting barriers. Markov Chains: General definitions, classification of states, limit theorems, irreducible chains. Markov Processes: The birth-death process. Applications

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Classroom (face-to-face)
Face-to-face, Distance learning,	
etc.	
USE OF INFORMATION AND	Use of ICT in communication with students
COMMUNICATIONS	
TECHNOLOGY	
Use of ICT in teaching, laboratory	
education, communication with	

students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	39
teaching are described in detail.	Working independently	78
Lectures, seminars, laboratory	Exercises-Homework	33
practice, fieldwork, study and		
analysis of bibliography, tutorials,		
placements, clinical practice, art		
workshop, interactive teaching,		
educational visits, project, essay		
writing, artistic creativity, etc.		
	Course total	150
The student's study hours for each		
learning activity are given as well		
as the hours of non-directed study		
according to the principles of the		
ECTS		
STUDENT PERFORMANCE		
EVALUATION		
Description of the evaluation	Final Written exam in Gi	reek (in case of Erasmus
proceaure	students in English) v	vnich includes resolving
Language of qualuation methods	application problems.	
of evaluation, summative or		
conclusive multiple choice		
auestionnaires short-answer		
questions open-ended questions		
problem solving written work		
essay/report_oral examination		
nublic presentation laboratory		
work clinical examination of		
patient art interpretation other		
Specifically-defined evaluation		
criteria are given, and if and		
where they are accessible to		
students.		

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:						
Books in English						
Lawler. Introduction to Stochastic Processes						
Ross. Introduction to probability models (Chapters 4, 6, 7)						
Books in Greek:						
Χρήστος Λάγκαρης. Θεωρία Στοχαστικών διαδικασιών. Πανεπιστημιακό						
Τυπογραφείο Ιωαννίνων.						
Στοχαστικές Ανελίξεις, Κάκουλλος Θεόφιλος						
Στοχαστικές ανελίξεις, Δάρας Τρύφων Ι., Σύψας Παναγιώτης Θ.						
Στοχαστικές μέθοδοι στις επιχειρησιακές έρευνες, Βασιλείου Παναγιώτης - Χρήστος						
Μαθήματα στογαστικών διαδικασιών Τ.Α., Αρτίκης Θεόδωρος Π.						

- Related academic journals: Stochastic Processes and their Applications