COURSE OUTLINE

GENERAL

SCHOOL	School of Science			
ACADEMIC UNIT	Department of Mathematics			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	MAE525	MAE525 SEMESTER Fall		
COURSE TITLE	Group Theory			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
	Interactive, Presentations 3 6		6	
Add rows if necessary. The organisation of teaching and the				
teaching methods used are describ	ed in detail at (d	d).		
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special backgr	ound, skills dev	elopment.	
PREREQUISITE COURSES:	422, Algebraic Structures I			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBSITE (URL)	http://www.math.uoi.gr/~nondas_k/GroupsNotesLONG2.pdf			

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Familiarity with: group, abelian group, subgroup, normal subgroup, quotient group, direct product of groups, homomorphism, isomorphism, kernel of a homomorphism. Apply group theory to describe symmetry, describe the elements of symmetry group of the regular n-

gon (the dihedral group D_{2n}). Compute with the symmetric group. Know how to show that a subset of a group is a subgroup or a normal subgroup. State and apply Lagrange's theorem. State and prove the isomorphism theorems. Sylow theorems. The classification of finite abelian groups. Normal series, central series, nilpotent groups. Applications in Geometry.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data	Project pla
and information, with the use of the	Respect for
necessary technology	Respect for
Adapting to new situations	Showing so
Decision-making	responsibil
Working independently	Criticism a
Team work	Production
Working in an international environment	thinking
Working in an interdisciplinary	Others
environment	

Production of new research ideas

Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others

Study particular characteristics of group theory in topology and geometry. Independent and team work. *Working in an interdisciplinary.*

SYLLABUS

Basic properties in groups. Symmetries. Subgroups, Direct products, Cosets. Symmetric groups. Normal Subgroups, Quotient groups. Homomorphisms. Semidirect product. Classification of finite abelian groups. Sylow theorems. Normal series, Solvable groups. Central series, Nilpotent groups

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face			
Face-to-face, Distance learning,				
etc.				
USE OF INFORMATION AND	communication with students			
COMMUNICATIONS				
TECHNOLOGY				
Use of ICT in teaching, laboratory				
education, communication with				
students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of	Lectures	26		
teaching are described in detail.	Working hours in class	13		
Lectures, seminars, laboratory	Project	30		
practice, fieldwork, study and	Assignments	40		
analysis of bibliography, tutorials,	Final exam	41		
placements, clinical practice, art				
workshop, interactive teaching,				
educational visits, project, essay				
writing, artistic creativity, etc.				
	Course total	150		
The student's study hours for each				
learning activity are given as well				
as the hours of non-directed study				
according to the principles of the				
ECTS				
STUDENT PERFORMANCE				
EVALUATION				
Description of the evaluation				
procedure	Muitter Evensingtion Oral D			
language of quality ting motheda	written Examination, Oral P	resentation, tests, written		
conguage of evaluation, methods	assignments.			
conclusive, multiple choice				
conclusive, multiple choice				
questionnulles, short-unswer				
problem solving, written work				
essau/report oral examination				
nublic presentation Jaboratory				
work clinical examination of				
natient art interpretation other				
patient, art interpretation, other				
Specifically-defined evaluation				
criteria are given, and if and				
where they are accessible to				
students.				

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

An Introduction to the Theory of Groups (Graduate Texts in Mathematics) 4th Edition by Joseph Rotman

Θεωρία ομάδων

Μιχάλης. Α. Γεωργιακόδης - Παναγιώτης. Ν. Γεωργιάδης

M.A. Armstrong: «Ομάδες και Συμμετρία» (Κεφ. 1-24), Εκδόσεις «Leaderbooks»,