COURSE OUTLINE

GENERAL

SCHOOL	School of Science				
ACADEMIC UNIT	Department of Mathematics				
LEVEL OF STUDIES	Graduate				
COURSE CODE	ГЕ5		SEMESTER	Spi	ring
COURSE TITLE	Algebraic Topology I				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS		CREDITS	
			3		6
Add rows if necessary. The organisation of teaching and the					
teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special background. Specialised general knowledge. Skills development in connections with topology geometry and algebra.				
PREREQUISITE COURSES:	MAY413 General Topology, MAY422 Algebraic Stractures I				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBSITE (URL)	http://www.math.uoi.gr/~nondas_k/SimiosisAlgTop011.pdf				

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Algebraic topology is a twentieth century field of mathematics that can trace its origins and connections back to the ancient beginnings of mathematics. One of the strengths of algebraic topology has always been its wide degree of applicability to other fields.

Nowadays that includes fields like physics, differential geometry, algebraic geometry, and number theory.

Familiarity with basic notions from point set topology. Compact open topology and function spaces. Why Lie groups are important. Cell complexes and the category of CW spaces. Connection between homotopy and important problems in geometry. How do we compute using homotopy? How can we distinguish between topological spaces?

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas

Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others

Η μετάβαση και ευχέρεια κατανόησης δύσκολων μαθηματικών αποδείξεων. Αυτόνομη εργασία ώστε να έχουν την ευκαιρία να βελτιώσουν την ικανότητά τους για συγγραφή ατομικών μαθηματικών κειμένων.

Παροχή των απαραίτητων τοπολογικών γνώσεων ώστε να μπορούν να κατανοήσουν - αναλύσουν τοπολογικά-γεωμετρικά προβλήματα.

SYLLABUS

Compact open topology. GL(n) as Lie group. Cell complexes. Real and complex project space. Homotopy and Homotopy Type. Homotopy Equivalence. The Homotopy Extension Property. Paths and Homotopy. Homotopy groups. Covering Spaces. The Fundamental Group of the Circle. Induced Homomorphisms. The van Kampen Theorem. Applications to Cell Complexes. The Classification of Covering Spaces. Deck Transformations and Group Actions.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face				
Face-to-face, Distance learning,					
etc.					
USE OF INFORMATION AND					
COMMUNICATIONS					
TECHNOLOGY					
Use of ICT in teaching, laboratory					
education, communication with					
students					
TEACHING METHODS	Activity	Semester workload			
The manner and methods of	Lectures	26			
teaching are described in detail.	Working hours in class	13			
Lectures, seminars, laboratory	Project	30			
practice, fieldwork, study and	Assignments	40			
analysis of bibliography, tutorials,	Final	41			
placements, clinical practice, art					
workshop, interactive teaching,					
educational visits, project, essay					
writing, artistic creativity, etc.					
	Course total	150			
The student's study hours for each					
learning activity are given as well					
as the nours of non-directed study					
STUDENT PERFORMANCE					
FVALUATION					
Description of the evaluation					
procedure					
Lanauaae of evaluation. methods	Written Examination. Oral P	resentation. tests. written			
of evaluation, summative or	assignments.				
conclusive, multiple choice	C				
questionnaires, short-answer					
questions, open-ended questions,					
problem solving, written work,					
essay/report, oral examination,					
public presentation, laboratory					
work, clinical examination of					
patient, art interpretation, other					
Specifically-defined evaluation					
criteria are given, and if and					
where they are accessible to					
students.					

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

A first course in topology, j. Muncres, Prentice Hall.

Algebraic Topology, A. Hatcher, https://www.math.cornell.edu/~hatcher/AT/

A Concise Course in Algebraic Topology, J. P. May,

www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf