COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF SCIENCES			
ACADEMIC UNIT	DEPARTMENT OF MATHEMATICS			
LEVEL OF STUDIES	GRADUATE			
COURSE CODE	EM4		SEMESTER	2nd Semester
COURSE TITLE	Fluid Mechanics			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	G CREDITS	
			3	7,5
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialized	background		
PREREQUISITE COURSES:	Methods of Applied Mathematics			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The objectives of the course are:

- Development of the theoretical background of the graduate student in matters relating to Fluid Mechanics and ability of the student to apply analytical, approximate and numerical methods in Fluid Mechanics problems.
- Upon completion of the course the graduate student will be able to solve problems with analytical, approximate or numerical methods and further deepen the understanding of such methods.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

The course aims to enable the graduate student to develop the ability to analyze and synthesize basic knowledge of Fluid Mechanis. This will give to the students the opportunity to work in an international multidisciplinary environment.

(3) SYLLABUS

Kinematics of Fluids, Fluid flow analysis, Equation of continuity and stream function, motion equations for Ideal and real fluids, laminar and turbulent flow, Boundary layer flows with adverse pressure gradient, Numerical Methods in Fluid Mechanics, Classification of fluid dynamics problems and relevant equations that describe basic numerical schemes, method of finite differences, compatibility, stability and convergence of numerical shemes, finite volume method, Introduction to the method of weighted residues, finite element method. The course includes practical application in the computer laboratory.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face		
Face-to-face, Distance learning, etc.			
USE OF INFORMATION AND			
COMMUNICATIONS TECHNOLOGY			
Use of ICT in teaching, laboratory education,			
communication with students TEACHING METHODS	A attivity	Semester workload	
The manner and methods of teaching are	Activity		
described in detail.	Lectures	39 hrsς	
Lectures, seminars, laboratory practice,	Study of theory	78 hrs	
fieldwork, study and analysis of bibliography,	Home exercises	44,5 hrs	
tutorials, placements, clinical practice, art			
workshop, interactive teaching, educational visits, project, essay writing, artistic creativity,			
etc.			
	Total	187,5 hrs	
The student's study hours for each learning	10101	107,5 113	
activity are given as well as the hours of non- directed study according to the principles of			
the ECTS			
STUDENT PERFORMANCE			
EVALUATION			
Description of the evaluation procedure	Written examination at the end of the semester (obligatory), Homework and / or midterm exam (optional).		
Language of evaluation, methods of			
evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions,			
open-ended questions, problem solving,			
written work, essay/report, oral examination,			
public presentation, laboratory work, clinical			
examination of patient, art interpretation,			
other			
Specifically-defined evaluation criteria are			
given, and if and where they are accessible to			
students.			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography: - Related academic journals:

Related academic journals.

- Fluid Mechanics, Volume 1, A. Papaioanou, 2nd Edition, 2001 (in Greek).
- Computational Fluid Mechanics, I. Soulis, 1st Edition, 2008 (in Greek).
- Numerical heat transfer and fluid flow, S.V. Patankar, McGraw-Hill, New York, 1980.
- The Finite Element Method, Vol. 1, The Basis, O.C. Zienkiewicz, R.L. Taylor, 5th Ed.,

Butterworth-Heinemann, Oxford, 2000.

• Computational Techniques for fluid Dynamics, C.A.J. Fletcher Volumes I and II, 2nd Ed. Springer-Verlag, Berlin, 1991.