COURSE OUTLINE

GENERAL

SCHOOL	School of Science			
ACADEMIC UNIT	Department of Mathematics			
LEVEL OF STUDIES	Postgraduate			
COURSE CODE	ΑΛ2		SEMESTER 2	
COURSE TITLE	Algebra II			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
			3	7,5
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d)				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialised	general knowle	edge	
PREREQUISITE COURSES:	NO			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	http://users	s.uoi.gr/abeligi	a/Algebrall/Algebra	ll2015.html

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course aims to introduce the students to the main tools and methods of Homological Algebra. Additionally, several applications in various areas of mathematics are presented.

At the end of the course we expect the student to have understood the definitions and basic theorems which are discussed in the course, to have understood how they are applied in discrete examples, to be able to apply the material in order to extract new elementary conclusions, and finally to perform some (no so obvious) calculations.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data	Project planning and management
and information, with the use of the	Respect for difference and multiculturalism
necessary technology	Respect for the natural environment
Adapting to new situations	Showing social, professional and ethical
Decision-making	responsibility and sensitivity to gender issues
Working independently	Criticism and self-criticism
Team work	Production of free, creative and inductive
Working in an international environment	thinking
Working in an interdisciplinary	Others
environment	
Production of new research ideas	

The course aims to enable the postgraduate student to acquire the ability to analyse and synthesize basic knowledge of the methods of Homological Algebra and its applications to various areas on Mathematics. The contact of the undergraduate student with the ideas and concepts of Homological Algebra, promotes the creative, analytical and deductive thinking and the ability to apply abstract knowledge in various fields.

SYLLABUS

- 1. Preliminaries: elements of basic ring theory.
- 2. Introduction to module theory.
- 3. Fundamental constructions of modules.
- 4. Categories and functors.
- 5. Projective, injective and flat modules.
- 6. Complexes and Homology.
- 7. Projective and injective resolutions.
- 8. Derived functors.
- 9. Ext and Tor.
- 10. Homological dimensions.
- 11. Applications of Homological Algebra.

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face
Face-to-face, Distance learning,	
etc.	
USE OF INFORMATION AND	
COMMUNICATIONS	
TECHNOLOGY	
Use of ICT in teaching, laboratory	
education, communication with	

students		
TEACHING METHODS	Activity	Semester workload
The manner and methods of	Lectures	39
teaching are described in detail.		
Lectures, seminars, laboratory		
practice, fieldwork, study and		
analysis of bibliography, tutorials,		
placements, clinical practice, art	Study of the elements of	32.5
workshop, interactive teaching,	the theory and methods	- , -
educational visits, project, essay	for solving exercises	
writing, artistic creativity, etc.	0.000	
The student's study hours for each		
learning activity are given as well	Course total	57
as the hours of non-directed study		57
according to the principles of the		
ECTS		
STUDENT PERFORMANCE		
EVALUATION	Combination of: Weekly hor	nework, presentations in
Description of the evaluation	the class by the students, w	ritten work, and, at the end
procedure	of the semester, written fina	al exams in Greek
	combining analysis of theor	etical topics and problem
Language of evaluation, methods	solving.	
of evaluation, summative or		
conclusive, multiple choice		
questionnaires, short-answer		
questions, open-ended questions,		
problem solving, written work,		
essay/report, oral examination,		
public presentation, laboratory		
work, clinical examination of		
patient, art interpretation, other		
Specifically defined avaluation		
criteria are given and if and		
where they are accessible to		
students		
students.		

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- 1. P. Hilton and U. Stammbach: "*A Course in Homological Algebra*", Springer-Verlag, (1971).
- 2. J. Rotman: "*An Introduction to Homological Algebra*", Springer, Second Edition, (2009).
- 3. M. Scott Osborne: "Basic Homological Algebra", Springer, (2000).
- 4. Ch. Weibel: "*An Introduction to Homological Algebra*", Cambridge University Press, (1994).
- 5. S.I. Gelfand and Yu. Manin: "Methods of Homological Algebra", Springer, Second Edition, (2003).
- 6. P. Bland: "*Rings and their Modules*", De Gruyter, (2011).

- Related academic journal: -