UOI Department of Mathematics

15 April 2021

On the cosmological implications and related issues in string theories

 ${\cal G}eorge \; {\cal K}. \; {\cal L}eontaris$

University of Ioannina

Outline of the present Talk

- ▲ Cosmology and Einstein Gravity: a few facts
- ▲ Strings and Branes
- ▲ Moduli Fields in Effective String Theory Models
- ▲ Quantum corrections and de Sitter Space
- ▲ Inflation in String Theory Models
- ▲ Concluding Remarks

A few facts about Cosmology

▲ Major Observational Discovery ~ 22 years ago:

Accelarating Expansion of the Universe Against our intuition

▲ What do we mean by 'expansion'?

 \bullet Galaxies move away from each other, $v\propto$ distance

• Intrinsic expansion: it's the scale of space that changes (think of two ants on the surface of an inflating balloon)

Content of the Universe

▲ 5% Visible Matter

▲ 27% Dark Matter

explains gravitational & astrophysical phenomena (holds stars together in galaxies ... etc) No or feeble interaction with visible matter \Rightarrow undetectable?

▲ 68% Dark Energy

 \Rightarrow Explains Accelerated Expansion of the Universe

▲ Dark Energy (DE) : In Einstein's Gravity ▲ DE is expressed with a positive cosmological constant: $\Lambda \approx 10^{-120} M_{Planck}^4 \ (\sim m_{\nu}^4)$

 \blacktriangle General Relativity (GR) Equations: \blacktriangle

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \kappa T_{\mu\nu}$$

- $R_{\mu\nu} \rightarrow \text{Ricci tensor}$
- $R \rightarrow$ Curvature scalar
- $T_{\mu\nu} \rightarrow$ Energy-Momentum tensor

Reminder

throughout the present talk we will often refer to the

Principle of Least Action:

For a physical system described by the Lagrangian

 $\mathcal{L}(q,\dot{q}) = T - U$

the system follows the 'path' for which the action

$$\boldsymbol{\mathcal{S}} = \int_{t_i}^{t_f} \boldsymbol{\mathcal{L}}(\boldsymbol{q}, \dot{\boldsymbol{q}}) dt$$

is stationary

$$\delta S = 0 \Rightarrow$$

 \Rightarrow Equations of Motion, Conservation Laws...

Dark Energy (DE): Significant implications in GR

▲ Consider the action in field theory case (ϕ scalar)

$$S = \int d^4x \, \mathcal{L}(\phi)$$

$$\mathcal{L}(\phi) = \partial_{\mu}\phi\partial^{\mu}\phi - U(\phi)$$

Only differences of (potential) energy matter!

▲ Action in Einstein Theory

$$S = \frac{1}{\kappa} \int d^4x \sqrt{-g} \left(\frac{1}{2} R - \Lambda + \kappa \mathcal{L}(\phi) \right)$$

Adding a constant Λ implies a term $\sqrt{-g} \Lambda$ in the Lagrangian. Change of $U(\phi)$ modifies the vacuum energy! ▲ **DE:** Equivalent Effective Field Theory description▲

Potential Energy $V(\phi)$ of a scalar field, ϕ (... for example ϕ could be the Higgs field...)

We live in a Universe with positive cosmological constant $\Lambda > 0$

 \blacktriangle de Sitter vacua \blacktriangle

With a few additional requirements:

 $V(\phi)$ appropriate for **Cosmological Inflation** (CI) (CI solves problems of flatness, horizon, monopoles,...)

▲ Challenge : Embedment of Inflationary Scenario in String Theory

STRING THEORY ↓ String Theory unifies Einstein's theory of gravity with quantum theory This is a highly non trivial accomplishment! A String Theory predicts SIX new dimensions!A these must be tiny to escape detection! this is called Compactification

Ten dimensional space must look like:

 $\mathcal{R}^{3,1} \times \mathcal{X}_6$

 $\mathcal{R}^{3,1}$ Minkowski spacetime \mathcal{X}_6 Six compactified dimensions

▲ Pictorial compactification of the six extra dimensions and the "lattice" of 4-d spacetime

▲ In principle, geometry of compactification can differ from point to point (*compactification on sphere, torus...*)

▲ Physical properties of 4-d spacetime depend on the choice of compactification

String Theory Spectrum

Open Strings Closed Strings Branes (generalized notion of membranes) Moduli fields

STRING-BRANE Unification Scenario...

QFT (particles ~ open strings), Gravity (closed strings propagating in the bulk \rightarrow explains weakness of gravity)

Compactifying the six additional dimensions, we are left with an Effective Field Theory (EFT) to describe the four-dimensional world

- ▲ Compactifications characterised by large # of moduli: ▲
- ▲ Example: Compactification on Calabi-Yau (CY) manifold

 \mathcal{CY}_3 characterised by radius R (modulus). However.... \rightarrow

Classical EoM invariant under *R***-rescalings**

\downarrow

∀ solution leading to Effective Field Theory (SM, GUT,...) ∃ family of solutions by changing R. ⇒R must be fixed! ⇐

 \land at **Effective Field Theory** level: \land

... in general

▲ Deformations of Compactifications correspond to massless scalar fields in four dimensions and if they couple to Standard Model fields they create problems with fifth forces and other cosmological issues...

▲ Tasks ▲

▲ In our EFT model we must guarantee positive mass-squared for all moduli fields

 \Rightarrow

 $\Rightarrow Moduli Stabilisation \leftarrow$

Also, in order to solve the cosmological problems

▲ Look for possible **Inflaton** candidates among *moduli* and implement some viable **Inflationary Scenario**

 \blacktriangle At String Theory level: \blacktriangle

▲ Large Number of **CY** of **Compactifications** Numerous choices of fluxes

Enormous Number of String Vacua (~ 10^{500})

 \Rightarrow

Each one of them defines a possible Effective Theory to describe low energy physics

String Landscape

 \downarrow

However, most (if not all) of these vacuua predict negative cosmological constant Λ (Anti-de-Sitter space).

▲ Long standing Question ▲

 \downarrow

▲ Are there any de Sitter vacua in the Landscape? ... If answer is Yes...they are...

 $\Rightarrow Certainly Scarce \leftarrow$

Zeitgeist:

 \Rightarrow ...according to recent claims... \Rightarrow

String landscape is surrounded by a vast swampland of inconsistent field theories of dS vacua... (according to recent conjectures...) Grayzone populated by 'stringy' dS vacua not unanimously adopted

$\mathcal{R}easonable \ \mathcal{P}roject$

- ▲ Propose a solution to the Moduli Stabilisation problem
- \blacktriangle Examine whether a dS vacuum exists in String Theory

▲ If yes:

examine cosmological implications such as inflation.

★ Moduli Space (notation)

 \blacktriangle Graviton, dilaton · · ·

$$g_{\mu
u}, \ \phi, \cdots$$

 \blacktriangle Scalar, \cdots

C_0, \cdots

1. $\land C_0, \phi \rightarrow combined to axion-dilaton modulus:$

$$S = C_0 + i e^{-\phi} \equiv C_0 + \frac{i}{g_s}$$

2. z_a : Complex Structure (CS) moduli (shape)

3. T_i : Kähler (size) $\leftrightarrow J = g_{ij}dz^i \wedge dz^j$

Basic 'ingredients' of Effective String Model: 1) Superpotential \mathcal{W} and 2) Kähler potential \mathcal{K}

\blacktriangle The Superpotential \mathcal{W}_0

 \mathcal{W}_0 is of fundamental importance in EFT. It provides couplings between the fields (quarks, leptons, moduli, ...) which describe their interactions and masses observed in experiments etc

▲ The superpotential is a function of S and z_a , but not of the Kähler moduli T_i .

One can prove that z_a and S acquire correct masses but!

▲ Kähler moduli $\notin \mathcal{W}_0 \Rightarrow$ remain unfixed! ▲

▲ The classical Kähler potential is a function of the Kähler moduli which define the internal volume $\mathcal{V} \sim \prod_i (T_i - \bar{T}_i)^a$:

$$\mathcal{K}_0 = -\sum_{i=1}^3 \ln(-i(T_i - \bar{T}_i)) + \dots \propto -\log(\mathcal{V}_{internal}) + \dots$$
(1)

and we can use it to compute the scalar potential of EFT. However, because of the peculiar structure of \mathcal{K}_0 (dubbed no-scale) the so derived scalar potential is automatically zero:

$$V = e^{\mathcal{K}} \left(\sum_{I,J} \mathcal{D}_I \mathcal{W}_0 \mathcal{K}^{I\bar{J}} \mathcal{D}_{\bar{J}} \mathcal{W}_0 - 3 |\mathcal{W}_0|^2 \right) = 0$$

In other words, the Kähler moduli do not have a potential and therefore, their masses are completely **undetermined**! (recall that $m_{\phi}^2 \propto \frac{\partial^2 V}{\partial \phi^2}$) to epitomise: <u>Kähler</u> moduli not fixed due to structure of classical theory

The missing ingredient is:

QUANTUM corrections

The **Question** is: What kind of corrections ensure a dS vacuum? Let a modulus τ with classical potential $V_{clas.}(\tau) \equiv 0$

▲ Hence, any τ -dependent **perturbative** quantum corrections

 $V_{eff}(\tau) = V_{clas.} + V_{pert.}$

must vanish for $\tau \to \infty$. If $V_{eff}(\tau \to \infty)$ vanishes from below:

 $\lim_{\tau \to \infty} V_{eff} \to 0^-$

the expected shape of the potential is of the form

This is Anti-de Sitter minimum! \Rightarrow not acceptable!

Hence, vanishing at infinity must occur from positive values $\lim_{\tau \to \infty} V_{eff} \to 0^+$ Expected shape of the potentials: $V_{\rm eff}$ 1.5 1.0 0.5 6 40 50 60 70 t 30 20

The potential on the RHS exhibits local minimum and maximum This suggests that V_{eff} should have two competing terms PERTURBATIVEStringLoopCorrectionsand

The Kähler potential \mathcal{K}

It is known that in String Theory: multigraviton scattering generates higher derivative couplings in curvature R:

Leading correction in the 10-d effective action:

$$\propto \int _{M_{10}} R^4$$

Reduction on $\mathcal{M}_4 \times \mathcal{X}_6$, (with \mathcal{M}_4 4-d Minkowski) induces a new Einstein Hilbert (\mathcal{EH}) term R Extr which lives in the six-dimensional compactified space.

It is proportional to the Euler characteristic of the manifold:

$$\chi \propto \int R \wedge R \wedge R$$

 \blacktriangle this \mathcal{EH} term possible in 4-dimensions only!

\blacktriangle Introducing 7-branes \blacktriangle

Localised vertices can emit gravitons and KK-excitations in 6d \Rightarrow KK-exchange between graviton vertices and D7-branes

Figure: non-zero contribution from 1-loop; 3-graviton scattering.

The geometric Set Up

Intersecting D7 membranes immersed in higher dimensions

Stabilisation requires three intersecting D7s! (at least)

▲ Kähler potential including loop corrections:

 $\mathcal{K} = -2\ln\{\mathcal{V} + \boldsymbol{\xi} + \gamma\ln(\mu\mathcal{V})\}$

Induced scalar potential of EFT:

$$V_{ ext{eff}} \propto \gamma rac{\ln{(\mu \mathcal{V})} - 4}{\mathcal{V}^3} + rac{d}{\mathcal{V}^2}$$

Extrema at $dV_{\text{eff}}/d\mathcal{V} = 0 \Rightarrow (w \propto \log \mathcal{V})$:

 $we^w = z$

Solution \rightarrow double-valued Lambert W-function:

 $w \Rightarrow W(z)$

 \Rightarrow determines values of \mathcal{V} -modulus at the extrema of V_{eff} .

- ▲ Double values for $z \leq 0$.
- \blacktriangle We need two extrema (*max* and *min*), hence

 $-e^{-1} < z < 0$

vertical line represents any value of $z_m = \frac{2d}{3\gamma}e^{\frac{13}{3}}$ between $(-e^{-1}, 0)$ where min and max can coexist.

but! requirement for de Sitter vacua puts additional restrictions

\blacktriangle de Sitter vacua \blacktriangle

minimum $V_{\text{eff}} = V_F + V_D$ at \mathcal{V}_0 must be positive:

V^{min} _	γ	d	> 0
$v_{\rm eff}$ –	$\overline{\mathcal{V}_{0}^{3}}$	$\overline{\mathcal{V}_{0}^{2}}$.	> 0
	r U	r U	

Plot of V_{eff} vs \mathcal{V} for fixed $\rho = \frac{d}{\gamma \mu \mathcal{W}_0^2}$. The lower curve corresponds to AdS vacuum. At large volume, the potential vanishes asymptotically after passing from a maximum.

Non-perturbative Superpotential $\mathcal W$

 \land Adding also NP-contributions for modulus T_1

 $\mathcal{W} = \mathcal{W}_0 + Ae^{-\alpha T_1}, \quad D_{T_1}\mathcal{W} = 0$

▲ Resulting scalar potential **untractable** !

For large \mathcal{V} expansion:

$$V_{\text{eff}} \approx \left(\epsilon \mathcal{W}_0\right)^2 \left(\frac{2\xi - \mathcal{V} + 4\gamma(\log(\mathcal{V}) - 1)}{4\mathcal{V}^3}\right) + \text{D} - \text{terms} \qquad (2)$$

Inflation can be described by a scalar field $\phi \sim \log \mathcal{V}$ rolling down from the top of the potential, $\ddot{\phi} + 3H\dot{\phi} + 3V'(\phi) = 0$. A scenario called slow-roll inflation requires a flat region. Inflation occurs between t_* and t_{end} and stops when the slope becomes steep.

Quantum corrections fade out as $\mathcal{V} \to \infty$ and $V_{\text{eff}} \to 0$. Hence the above cannot be the true minimum.

According to the proposed scenario we live in a metastable minimum. The true vacuum is reached by the inflaton field penetrating the barrier in sufficiently long time.

Conclusions

 ★ Accelerated Expansion of Universe and other Cosmological Observations impose strict requirements on String Theory and Particle Physics
 ★ Data rule out most of Effective Fields Theories (the so called String Landscape)

★ Theory at classical level fails to fix moduli problem and create today's picture of the Universe

★ This can happen when appropriate Quantum corrections are incorporated

(which require a geometric configuation of Strings & Branes)

\bigstar Reasonable Question? \bigstar

If de Sitter vacua so scarce is String Theory, why still looking for them there?

 \star Lampost Effect? \star

based on works with:

I. Antoniadis, Y. Chen, 1803.08941, (EPJC) 1909.10525 (JHEP) I. Antoniadis, O. Lacombe 2007.10362 (EPJC) V. Basiouris 2007.15423 (PLB)